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Abstract

A matrix lower bound is defined that generalizes ideas apparently
due to S. Banach and J. von Neumann. The matrix lower bound has
a natural interpretation in functional analysis, and it satisfies many of
the properties that von Neumann stated for it in a restricted case.

Applications for the matrix lower bound are demonstrated in several
areas. In linear algebra, the matrix lower bound of a full rank matrix
equals the distance to the set of rank-deficient matrices. In numerical
analysis, the ratio of the matrix norm to the matrix lower bound is
a condition number for all consistent systems of linear equations. In
optimization theory, the matrix lower bound suggests an identity for a
class of min-max problems. In real analysis, a recursive construction
that depends on the matrix lower bound shows that the level sets of
continuously differentiable functions lie asymptotically near those of
their tangents.
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This paper is dedicated to John von Neumann at the centennial of his birth,
on 28th December 1903.

1 Introduction

John von Neumann and Herman Goldstine defined a “lower bound of a matrix”
[16, p. 1042] and listed several of its properties, which they believed were “too
well known to require much discussion.” The value they arrived at for the
lower bound of a square matrix is the smallest singular value. This value is not
surprising, but its derivation and properties are. They reveal a symmetry with
the matrix norm that seems to have gone unnoticed except by von Neumann
and Goldstine.

Similar values for matrix lower bounds appeared after von Neumann and
Goldstine’s paper. D. K. Faddeev and V. N. Faddeeva [6, p. 109] noted the
same value as a lower bound for the same class of matrices. A. S. Householder
[10, p. 48] defined a lower bound for square matrices, which in the spectral
case equals von Neumann and Goldstine’s, and in the most general case is still
zero for a singular matrix. None of these authors cite any literature about
matrix lower bounds, but all seem to be aware of earlier sources. Whatever its
origin, evidently the concept is a natural one that bears further investigation.

Here, a nonzero lower bound is proposed for all nonzero matrices of any
shape. This new lower bound generalizes the earlier definitions for square
matrices, when they are not zero, but it differs from them because it is never
zero. Section 2 examines four places where matrix lower bounds arise, and
proves that all the bounds are the same. Section 4 establishes properties for
this matrix lower bound that von Neumann and Goldstine intuited in their
special case. Section 5 demonstrates applications of the matrix lower bound
in linear algebra, numerical analysis, optimization theory, and real analysis.
Section 7 lists some open questions.

The matrix lower bound is a missing chapter in mathematics. Section 5
demonstrates that the lower bound finds applications in many different kinds
of theorems and proofs. These uses benefit from recognizing that the same phe-
nomenon appears in a variety of contexts, so it can be studied independently,
which facilitates its fullest exploitation. Indeed, Sections 2 through 4 show
that the matrix lower bound has a systematic collection of rules and proper-
ties which are analogous to but different from the matrix norm’s. Finally, the
lower bound has a tantalizing mixture of algebraic and analytic properties: it
is the norm of a basic canonical mapping associated with all quotient spaces,
and it is the distance to the set of rank deficient matrices. Thus, one suspects,
the matrix lower bound has independent interest.
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2 A Matrix Lower Bound

A matrix lower bound may be defined in terms of matrix analysis, convex sets,
min-max optimization, and functional analysis. The first approach is the most
easily motivated.

2.1 Definition

We will be dealing with: Rm and Rn as spaces of column vectors, with norms
on these spaces, and with the associated norms for m×n and n×m matrices.
The matrix norms are the ones that are variously called consistent, induced,
operator, or subordinate. It will not be confusing to use the same notation for
all the norms.

From the standpoint of establishing bounds and estimates, the principal
use of the matrix norm,

‖A‖ = max
x 6= 0

‖Ax‖
‖x‖

,

is that for any Ax = y there is an inequality of the form,

‖A‖ ‖x‖ ≥ ‖y‖ . (1)

Von Neumann and Goldstine referred to ‖A‖ as the “upper bound” of the
matrix.

The idea for the lower bound is that inequality (1) might be reversed pro-
vided ‖A‖ is replaced by some other number. Von Neumann and Goldstine
restricted A to be square, so that for any nonsingular Ax = y it is true that

‖A−1‖−1 ‖x‖ ≤ ‖y‖ .

Furthermore, they dealt with 2-norms so their ‖A−1‖−1 is just the smallest
singular value of A. Rather than choosing outright this numerical value for
a lower bound, however, von Neumann and Goldstine derived the value and
its properties. (The starting point for their derivations, min‖x‖=1 ‖Ax‖, will
not be used here.) Among their findings is that their lower bound is the
largest number that satisfies the reverse of equation (1) for square, nonsingular
matrices. This suggests that, if more general lower bounds could be defined
for a broader class of matrices, then the largest of them might satisfy some
version of von Neumann and Goldstine’s interrelated properties.

Stefan Banach supplied lower bounds ready for this purpose. Let B be
the open ball of center 0 and radius 1 in whatever space is indicated. If
T : X → Y is a continuous linear transformation from one Banach space onto
another, then Banach proved [1, p. 38, chapter 3, equation (1)] that for every
ε > 0 there is a δ > 0 so that δBY ⊆ T (εBX). Thus if ‖y‖ = δ, then there is
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an x with y = T (x) and ‖x‖ ≤ ε, hence

δ

ε
‖x‖ ≤ ‖y‖ .

The restriction on ‖y‖ can be discarded by jointly scaling x and y. In this way
inequality (1) can be reversed in very general circumstances provided there
is an extra qualification [1, p. 150, chapter 10, theorem 10]: for any y in the
column space of A, there is some x with Ax = y and

m ‖x‖ ≤ ‖y‖ ,

where m is a number independent of x and y.
These developments may be summarized as follows. Banach showed that

nonzero lower bounds always exist provided they are limited in scope to some
x, while von Neumann and Goldstine found that the greatest lower bounds
are most interesting. Combining these ideas and adopting von Neumann and
Goldstine’s notation and terminology leads to the following definition.

Definition 2.1 (Matrix Lower Bound) (Compare [1, p. 150, chapter 10,
theorem 10] and [16, p. 1042, equation (3.2.b)].) Let A be a nonzero matrix.
The matrix lower bound, ‖A‖`, is the largest of the numbers, m, such that
for every y in the column space of A, there is some x with Ax = y and
m ‖x‖ ≤ ‖y‖.

In establishing various alternative definitions for the matrix lower bound
it will be convenient to have the set

M`(A) = {m : ∀y ∈ col(A), ∃x so Ax = y and m‖x‖ ≤ ‖y‖} ,

for which Definition 2.1 says ‖A‖` = maxM`(A). It is straightforward to see
that M`(A) is nonempty and bounded above, but a little proof is needed to
justify Definition 2.1’s assertion that M`(A) contains its supremum.

Lemma 2.2 (Existence and Bounds) The matrix lower bound exists and
is positive. In particular,

‖B‖−1 ≤ ‖A‖` ≤ ‖A‖

where B is any generalized inverse in the sense that ABA = A.

Proof. (Step 1.) It is always possible to find a matrix B that satisfies the
condition A = ABA; the pseudoinverse of A is one. If y ∈ col(A), then let
x = By so ‖x‖ ≤ ‖B‖ ‖y‖. The condition ABA = A implies Ax = ABy = y.
This is for any y, so ‖B‖−1 ∈M`(A).
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(Step 2.) Let m ∈ M`(A) and choose some nonzero y ∈ col(A). For these
choices there is some x with Ax = y and m‖x‖ ≤ ‖y‖. Thus m ≤ ‖y‖/‖x‖ =
‖Ax‖/‖x‖ ≤ ‖A‖.

(Step 3.) It remains to be shown that M`(A) contains its positive cluster
points and hence its supremum. Suppose m∗ > 0 is the limit of a sequence
{mn} ⊆ M`(A). If y ∈ col(A), then for each mn there is a xn with Axn = y
and mn‖xn‖ ≤ ‖y‖. These inequalities and the fact that {mn} converges to a
positive limit imply that the sequence {xn} is bounded. Therefore {xn} has a
convergent subsequence with limit x∗. Passing to the limit shows that Ax∗ = y
and m∗‖x∗‖ ≤ ‖y‖. Since this is for any y, so m∗ ∈M`(A).

2.2 Geometric Formulation

The manner in which Banach derived lower bounds, explained in Section 2.1,
suggests that the matrix lower bound has a geometric interpretation. Let A
be an m×n matrix, and let Bm and Bn be the open unit balls centered at the
origin in Rm and Rn. Matrix-vector multiplication carries Bn to a convex set
ABn around the origin in Rm. Banach and geometric intuition say this convex
set contains balls; and Lemma 2.3 shows ‖A‖` is the radius of the largest.
However, these are balls only relative to the subspace col(A) and not with
respect to all of Rm (unless col(A) = Rm). In convex analysis this concept is
known as the relative interior. This is in contrast to ‖A‖, which is the radius
of the smallest enclosing ball with respect to either space col(A) or Rm.

Lemma 2.3 (Geometric Characterization) (Compare [1, p. 38, chapter
3, equation (1)] and [10, p. 48, equation (6)].) Let A be a nonzero m × n
matrix, and let Bm and Bn be the unit balls in Rm and Rn, respectively. The
matrix lower bound ‖A‖` is the radius of the largest ball — with respect to the
subspace col(A) — that is centered at the origin and contained in ABn,

‖A‖` = max { r : col(A) ∩ rBm ⊆ ABn} .

Proof. Let R be the set in the Lemma. If y ∈ col(A) ∩ ‖A‖`Bm, then by
Definition 2.1 there is an x with Ax = y and ‖A‖` ‖x‖ ≤ ‖y‖ < ‖A‖`. Thus
‖x‖ < 1 so y ∈ ABn hence col(A) ∩ ‖A‖`Bm ⊆ ABn and then ‖A‖` ∈ R.

Suppose r ∈ R and r > 0. It is always necessary to deal separately with the
0 case: if y = 0, then A0 = y and r0 ≤ ‖y‖. In the main case, if y ∈ col(A) and
y 6= 0, then yr/‖y‖ ∈ col(A)∩ cl(rBm). The containment col(A)∩ rBm ⊆ ABn
applies as well to the closures of these sets; thus there is an x ∈ cl(Bn) with
Ax = yr/‖y‖. Therefore A(x‖y‖/r) = y where r‖(x‖y‖/r)‖ = ‖x‖ ‖y‖ ≤ ‖y‖.
This is for any y, so r ∈ M`(A), hence r ≤ ‖A‖`. In summary, ‖A‖` is the
largest member of R.
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2.3 Min-max Formulation

The use of the matrix lower bound lies in the application of the property stated
in Definition 2.1, but the bound can be characterized in a more formulaic way
that is sometimes useful.

Lemma 2.4 (Min-max Characterization) (Compare [16, p. 1042, equa-
tion (3.1.b)].) If A is a nonzero matrix, then

‖A‖` = min
y ∈ col(A)\{0}

max
{x : Ax = y}

‖y‖
‖x‖

(2)

= min
{x : Ax 6= 0}

max
{z : Az = 0}

‖Ax‖
‖x+ z‖

.

Proof. The second formula needs no proof as it is a simple restatement of
the first. (Step 1.) If y 6= 0 and y ∈ col(A), then {x : Ax = y} is not empty.
Since this set is closed, it must contain a point nearest the origin. At that
point the maximum

M(y) = max
{x : Ax = y}

‖y‖
‖x‖

(3)

is attained. This function M(y) is used throughout the proof.
(Step 2.) Let

m = inf
y ∈ col(A)\{0}

M(y) . (4)

That m = ‖A‖` is straightforward: for every y, Definition 2.1 says the ratio
at which M(y) is attained must be bounded below by ‖A‖`. Therefore the
infemum of the M(y) is also bounded below by ‖A‖`. To prove the reverse
inequality, suppose y ∈ col(A). If y = 0, then A0 = y and m‖0‖ ≤ ‖y‖. If
y 6= 0, then again consider some x at which M(y) is attained. From this,

m ≤M(y) =
‖y‖
‖x‖

,

follows m‖x‖ ≤ ‖y‖, which is for any y, so m ∈M`(A).
(Step 3.) It remains to be shown that the infemum, m, is attained. This is

a surprisingly delicate argument. It is always possible to choose a sequence (a)
{M(yn)} that converges to m. All that is known of the yn is that yn ∈ col(A)
and yn 6= 0.

Equation (3)’s objective function, ‖yn‖/‖x‖, and constraints, Ax = yn, are
unchanged by any joint scaling of yn and the x, so without loss of generality it
is possible to assume that ‖yn‖ = 1. The sequence {yn} is then bounded, and
hence has a convergent subsequence (b) {yn′} with limit y∗. The conditions
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yn′ ∈ col(A) and ‖yn′‖ = 1 are inherited by the limit, so that M(y∗) is well-
defined. Let (c) M(y∗) be attained at x∗.

Since yn′ − y∗ ∈ col(A), there is an xn′ with Axn′ = yn′ and

‖A‖` ‖xn′ − x∗‖ ≤ ‖yn′ − y∗‖ . (5)

This inequality is gotten by applying Definition 2.1 to y = yn′ − y∗ to find an
x with Ax = y and ‖A‖` ‖x‖ ≤ ‖y‖; then xn′ is chosen so x = xn′ − x∗. In
any case, equation (5) implies that (d) {xn′} converges to x∗. Moreover, by
the definition of M(yn′),

‖yn′‖
‖xn′‖

≤ max
{x : Ax = yn′}

‖yn′‖
‖x‖

= M(yn′) . (6)

Altogether now — from (b and d), equation (6), (a), equation (4), and (c),

‖y∗‖
‖x∗‖

= lim
n′ →∞

‖yn′‖
‖xn′‖

≤ lim
n′ →∞

M(yn′) = m ≤M(y∗) =
‖y∗‖
‖x∗‖

,

which proves that m = M(y∗).

Corollary 2.5 (Attainment) There is a nonzero x with ‖A‖` ‖x‖ = ‖Ax‖.

Proof. In Lemma 2.4’s equation (2), first choose y that attains the mini-
mum, and then choose x that attains the maximum for this y.

2.4 Functional Analysis

There is a simple, abstract interpretation of the matrix lower bound, but some
background is needed to get at it.

If U is a Banach space and S is a subspace, then the quotient space U/S
consists of the equivalence classes defined by u ≡ u′ ⇔ u − u′ ∈ S. The
notation [u] = S + u is used for the class that contains u. If S is closed, then
U/S is a Banach space under the quotient norm,

‖[u]‖ = inf
u′ ∈ [u]

‖u′‖ .

The canonical function φ : U → U/S by φ(u) = [u] is continuous, linear, and
has operator norm ‖φ‖ = 1.

If T : U → V is a continuous linear transformation among Banach spaces,
then ker(T ) is closed, so U/ ker(T ) is a Banach space, and there is a further
canonical function ψ : U/ ker(T ) → im(T ) by ψ([u]) = T (u). This function
is continuous, linear and invertible. Moreover, if im(T ) is closed, then the
inverse map ψ−1 is continuous [1, p. 41, chapter 3, theorem 5], so it has an
operator norm, see Figure 1.



Joseph F. Grcar 9

col(A)

‖ψ−1‖−1= ‖A‖`ψ−1

��

Rn

‖T‖=‖A‖
T

vvvvvvvv

;;vvvvvvv

‖φ‖=1
φ

HHHHHHHH

$$HHH
HHH

HH

Rn/null(A)

‖ψ‖=‖A‖ ψ

OO

T : x 7→ Ax

φ : x 7→ [x] = null(A) + x

ψ : [x] 7→ Ax

Figure 1: The commutative diagram illustrating Lemma 2.6.

Lemma 2.6 (Functional Analysis Characterization) Let A be a nonzero
m × n matrix, and let ψ : Rn/null(A) → col(A) be the canonical map defined
by ψ([x]) = Ax. Then

‖ψ−1‖−1 = ‖A‖`
where the norm of ψ−1 is the operator norm induced from the norms on col(A)
and Rn/null(A).

Proof. All the spaces have finite dimension so the discussion preceding the
Lemma applies. Only the evaluation of the norm remains,

‖ψ−1‖ = max
y ∈ col(A)\{0}

‖ψ−1(y)‖
‖y‖

= max
y ∈ col(A)\{0}

min
{x : Ax = y}

‖x‖
‖y‖

.

Reciprocating this expression replaces the max-min by a min-max and inverts
the ratio. Hence ‖ψ−1‖−1 = ‖A‖` by Lemma 2.4.

3 Examples

There are explicit formulas for the matrix lower bounds of invertible matrices,
of rank 1 matrices, and with respect to spectral norms. For illustration, each
of these formulas is established by a different method of proof. The spectral
lower bound of a symmetric, positive definite matrix also has an interesting
upper bound that is due directly to von Neumann and Goldstine.

Lemma 3.1 (Invertible Matrices) (Compare [16, p. 1043, equations (3.5.d–
e)].) If A is invertible, then ‖A‖` = ‖A−1‖−1.
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Proof. Choose y 6= 0 at which ‖A−1‖ is attained, ‖A−1‖ = ‖A−1y‖/‖y‖.
Since there is exactly one x with Ax = y, it must be that x = A−1y satisfies
Definition 2.1. From

‖A‖` ‖A−1y‖ ≤ ‖y‖ = ‖A−1y‖/‖A−1‖

follows ‖A‖` ≤ ‖A−1‖−1. Lemma 2.2 gives the reverse inequality.

Lemma 3.2 (Rank 1 Matrices) If A is a rank 1 matrix, where A = uvt for
some u ∈ Rm and v ∈ Rn, then ‖A‖` = ‖u‖ ‖v‖∗, where ‖ · ‖∗ is the dual of
the vector norm for Rn. (The dual norm is discussed below in Section 4.1.)

Proof. Let Bn be the open unit ball in Rn. Since A has rank 1, therefore
ABn is an interval of radius ‖A‖, which is a 1-dimensional ball. Thus ‖A‖` =
‖A‖ by Lemma 2.3. It is well known that,

‖A‖ = max
x 6= 0

‖Ax‖
‖x‖

= max
x 6= 0

‖uvtx‖
‖x‖

= ‖u‖ max
x 6= 0

|vtx|
‖x‖

= ‖u‖ ‖v‖∗ .

Lemma 3.3 (Spectral Norms) (Compare [16, p. 1046, equation (3.22.b)].)
If A is not zero, and if the vector norms are 2-norms, then ‖A‖` = σmin, where
σmin is the smallest nonzero singular value of A.

Proof. Let A = UΣV t be the singular value decomposition of A: U and
V are orthogonal matrices, and Σ is a diagonal matrix whose diagonal entries
are the singular values, Σi,i = σi. If y ∈ col(A)\{0}, then y = Ax for an x of
the form x =

∑
i′ ci′vi′ , where i′ indexes only the nonzero singular values, and

where not all the coefficients ci′ vanish. Altering the coefficients would change
y; adding to x any vector orthogonal to the vi′ would increase ‖x‖; therefore
for this y it must be that,

max
{x : Ax = y}

‖y‖
‖x‖

=

(∑
i′ σ

2
i′ c

2
i′∑

i′ c
2
i′

)1/2

.

This ratio is minimized by choosing ci′ 6= 0 exactly for the smallest σi′ . The
smallest singular value is then the minimum over all y. This is ‖A‖` by Lemma
2.4’s equation (2).

Corollary 3.4 (Separation) (Compare [16, p. 1045, equation (3.17.b); and
p. 1073, equation (6.47)].) If A is symmetric and positive definite, and if the
vector norms are 2-norms, then

‖A‖` ≤ max
i
Ai,i ≤ ‖A‖ .
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Proof. From Lemma 3.3, ‖A‖` is the smallest singular value of A. Because
A is symmetric and positive definite, the singular values are the eigenvalues,
λn ≥ · · · ≥ λ2 ≥ λ1 = ‖A‖` > 0. Von Neumann and Goldstine calculated

n‖A‖` ≤
n∑
i=1

λi = trace(A) =
n∑
i=1

Ai,i ≤ nmax
i
Ai,i .

The lower bound on ‖A‖ comes from the fact that ‖A‖ maximizes utAv for
all unit vectors u and v [16, p. 1043, equation (3.10)].

4 Properties

Von Neumann and Goldstine [16, pp. 1042–5, section 3.2] list several proper-
ties of the matrix lower bound. These exhibit a symmetry with the matrix
norm whose aesthetic is all the more evident because they are not interrupted
with proofs. The proofs are straightforward for the case that von Neumann
and Goldstine considered; their contribution is recognizing and stating the
properties.

With some effort the properties also can be established for Definition 2.1’s
lower bound. The first property, the transpose identity, has a proof that
uses Lemma 2.6’s characterization of the lower bound in terms of functional
analysis. The next two groups of properties are inequalities for addition and
multiplication. Many of these inequalities are not universally true, so some
ingenuity is needed to find the most general hypotheses. The final group of
properties are inner product identities.

In establishing these properties it sometimes will be assumed that a given
matrix has full row rank. This is used in the following way. For anm×nmatrix
A to have full row rank means that the rows of A are linearly independent, so
the matrix has rank m. The column space of A then has dimension m hence it
must be all of Rm. Thus, “A has full row rank” means “Ax = y is consistent
for every y.”

4.1 Transpose Identity

To be clear about the meaning of some notation used here, it is necessary to
digress into a review of some aspects of dual spaces.

If V is a real vector space, then V ∗ = Hom(V,R) is called the algebraic
dual space of V . If V has a norm, ‖ · ‖, then the members f ∈ V ∗ for which
the following construction is finite,

sup
u 6= 0

f(u)

‖u‖
< ∞ ,
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are called bounded. These f form a space for which the construction serves
as a norm. If V has finite dimension, then all members of V ∗ are bounded.

For Rn and other Hilbert spaces it is possible to define an isomorphism
V → V ∗ by v 7→ 〈v, · 〉. This is also an isometry between the inner product’s
norm on V and the norm constructed for V ∗. Some parts of mathematics such
as convex analysis find it convenient to “identify” (Rn)∗ with Rn through this
mapping. It seems unwise to make this identification when other norms are of
interest, however, because the isomorphism is not an isometry for them.

For the present purposes it is better to recognize that each norm ‖ · ‖ on
Rn has a dual norm ‖ · ‖∗, also on Rn, that is defined by

‖v‖∗ = max
u 6= 0

vtu

‖u‖
.

The value for this dual norm of v ∈ Rn equals the norm for the member of
(Rn)∗ that acts by u 7→ vtu. Similarly, if some column vector norms are used to
define a matrix norm and a lower bound, ‖·‖ and ‖·‖`, then the corresponding
things defined by the dual column vector norms are indicated by ‖ · ‖∗ and
‖ · ‖∗` . The norms for all other spaces and their duals continue to have the
anonymous notation ‖ · ‖ whose identity is determined by the object to which
it is applied.

In functional analysis it is well known that the norm of a bounded linear
transformation equals the norm of its adjoint, ‖T‖ = ‖T ∗‖. In the notation
just introduced for matrices this becomes ‖A‖ = ‖At‖∗. Von Neumann and
Goldstine noted a similar identity for matrix lower bounds.

Lemma 4.1 (Transpose Equality) (Compare [16, p. 1043, equation (3.11.b)].)
If A is not zero, then

‖A‖` = ‖At‖∗` .

Proof. (Part 1.) Figure 1’s commutative diagram appears at the right side
of Figure 2 where it has been rotated and restated in terms of the image and
kernel spaces of T . Recall from Lemma 2.6 that

‖A‖` = ‖ψ−1
T ‖−1 . (7)

(Part 2.) As mentioned in the text preceding the Lemma, operator norms
are invariant with respect to adjoint, thus

‖ψ−1
T ‖ = ‖(ψ−1

T )∗‖ . (8)

(Part 3.) It is easy to see that adjoint commutes with inverse, since for
y ∈ im(T ) and f ∈ im(T )∗,

f(y) = f(ψT (ψ−1
T (y))) = (ψ∗T (f))(ψ−1

T (y)) = ((ψ−1
T )∗(ψ∗T (f)))(y)
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im(T ∗) (Rn/ ker(T ))∗
φ1oo Rn/ ker(T )

ψT

���
�
�
�
�
�
�

(Rm)∗

T ∗
77oooooo

φT ∗ ''OOOOOOOOOOO Rn

φT
eeJJJJJJJJJJ

Tyyt
t

t
t

t

(Rm)∗/ ker(T ∗)

ψT ∗

OO�
�
�
�
�
�
�

φ2 // im(T )∗

ψ∗T

OO�
�
�
�
�
�
�

im(T )

T ∗ : f 7→ f ◦ T
φT∗ : f 7→ [f ] = ker(T ∗) + f

ψT∗ : [f ] 7→ f ◦ T

φ1 : f 7→ f ◦ φT

φ2 : [f ] 7→ f |im (T )

T : x 7→ Ax

φT : x 7→ [x] = ker(T ) + x

ψT : [x] 7→ T (x)

Figure 2: The commutative diagram illustrating Lemma 4.1. The Lemma’s
proof associates ‖A‖` with each of the dashed arrows, working from right to
left, in five steps.

so (ψ−1
T )∗ ◦ ψ∗T = 1; similarly ψ∗T ◦ (ψ−1

T )∗ = 1. Hence ψ∗T is an isomorphism
whose inverse (ψ∗T )−1 is given by (ψ−1

T )∗, therefore

‖(ψ−1
T )∗‖ = ‖(ψ∗T )−1‖ . (9)

(Part 4.) The next step requires that the square diagram in the center of
Figure 2 commute. Suppose f ∈ (Rm)∗ so that [f ] is an arbitrary member of
(Rm)∗/ ker(T ∗). With this choice, on the one hand ψT ∗([f ]) = f ◦T : Rn → R;
and on the other hand the image of [f ] under the result of

[f ]
φ27−→ f |im(T )

ψ∗T7−→ f |im(T ) ◦ ψT
φ17−→ f |im(T ) ◦ ψT ◦ φT

acts on x ∈ Rn by

x
φT7−→[x]

ψT7−→Ax
f7−→ f(Ax) = (f ◦ T )(x) ,

so ψT ∗ = φ1 ◦ ψ∗T ◦ φ2 as claimed. It is well known that the following are
isometric isomorphisms,

(Rn/ ker(T ))∗ → ker(T )⊥ (Rm)∗/im(T )⊥ → im(T )∗

acting by f 7→ f ◦ φT acting by [f ] 7→ f |im(T )

(10)

and since it is further well known that

ker(T )⊥ = im(T ∗) ,

im(T )⊥ = ker(T ∗) ,
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so the isometric isomorphisms in equation (10) are just the φ1 and φ2 in Figure
2. Altogether, from ψT ∗ = φ1 ◦ ψ∗T ◦ φ2 follows ψ−1

T ∗ = φ−1
2 ◦ (ψ∗T )−1 ◦ φ−1

1 ; so
that

‖ψ−1
T ∗ ‖ = ‖(ψ∗T )−1‖ (11)

because φ−1
1 and φ−1

2 are isometric.
(Part 5.) The triangle at the left side of Figure 2 is identical to Figure 1’s

except that it has been drawn with respect to the adjoint transformation T ∗.
It is well known that if T represents the action of matrix-vector multiplication
by A, then T ∗ does the same for At. Hence by Lemma 2.6,

‖At‖∗` = ‖ψ−1
T ∗ ‖−1 (12)

(Step 6.) Equations (7 – 9, 11, 12) combine to give the desired result,

1

‖A‖`
= ‖ψ−1

T ‖ = ‖(ψ−1
T )∗‖ = ‖(ψ∗T )−1‖ = ‖ψ−1

T ∗ ‖ =
1

‖At‖∗`
.

4.2 Triangle Inequalities

The triangle inequalities for the matrix norm,∣∣∣‖A‖ − ‖B‖∣∣∣ ≤ ‖A+B‖ ≤ ‖A‖+ ‖B‖ ,

find parallels (pun) in von Neumann and Goldstine’s properties for the lower
bound.

‖A‖` − ‖B‖ ≤ ‖A+B‖` ≤ ‖A‖` + ‖B‖ .

The main implication of these inequalities is that the matrix lower bound is
continuous in some circumstances.

These inequalities are not universal. For example, if

A =

[
1

ε

]
and B =

[
0
−ε

]
,

then by Lemma 3.3 for spectral norms, ‖A+B‖` = 1 but ‖A‖` = ‖B‖ = ε, so
‖A+B‖` 6≤ ‖A‖`+‖B‖. The simplest case in which both triangle inequalities
are true appears to be that A and A+B have the same column or row spaces;
each inequality then follows from containment in a different direction.

Lemma 4.2 (Triangle Inequalities) (Compare [16, p. 1043, equation (3.8.b)].)
If A and A+B are not zero, then

‖A‖` − ‖B‖ ≤
1
‖A+B‖` ≤

2
‖A‖` + ‖B‖ ,
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provided the following conditions are satisfied, respectively.

1. col(A) ⊆ col(A+B) 2. col(A+B) ⊆ col(A)

or row(A) ⊆ row(A+B) or row(A+B) ⊆ row(A)

Proof. (Part 1.) Reduction to column hypotheses: suppose A and B satisfy
either of the row hypotheses, so At and Bt satisfy the corresponding column
hypothesis. If the Lemma is valid for the column hypotheses, then it may
be applied — to At, Bt and the dual vector norms — to give the respective
inequality,

‖At‖∗` − ‖Bt‖∗ ≤
1
‖At +Bt‖∗` ≤

2
‖At‖∗` + ‖Bt‖∗ .

The transposes can be removed to revert to the original matrix norm, and by
Lemma 4.1, to the original matrix lower bound.

(Part 2.) Reduction to inequality (2): suppose A and B satisfy either
of the hypotheses for inequality (1). Let A′ = A + B and B′ = −B, so A
and A + B equal A′ + B′ and A′, respectively; therefore A′ and B′ satisfy
the corresponding hypothesis for inequality (2). If the Lemma is valid for
inequality (2), then it may be applied — to A′ and B′ — to obtain

‖A‖` = ‖A′ +B′‖` ≤ ‖A′‖` + ‖B′‖ = ‖A+B‖` + ‖B‖ ,

which is inequality (1).
(Part 3.) Thus it suffices to consider just the column hypothesis case of

inequality (2). Suppose (A+B)x = y 6= 0. If (by 2) col(A+B) ⊆ col(A), then
by Definition 2.1 there is some δx with Aδx = Bx and ‖A‖` ‖δx‖ ≤ ‖Bx‖.
Let x′ = x+ δx so that both Ax′ = A(x+ δx) = (A+B)x = y and

‖x′‖ = ‖x+ δx‖ ≤ ‖x‖+ ‖δx‖ ≤ ‖x‖+
‖Bx‖
‖A‖`

≤
(

1 +
‖B‖
‖A‖`

)
‖x‖ ,

which rearranges to
‖y‖
‖x‖

≤
(

1 +
‖B‖
‖A‖`

)
‖y‖
‖x′‖

.

This is for any x and y with (A+B)x = y 6= 0. Thus,

max
{x : (A+B)x = y}

‖y‖
‖x‖

≤
(

1 +
‖B‖
‖A‖`

)
max

{x′ : Ax′ = y}

‖y‖
‖x′‖

,

so by Lemma 2.4,

‖A+B‖` ≤
(

1 +
‖B‖
‖A‖`

)
‖A‖` = ‖A‖` + ‖B‖ ,

which is the desired inequality.
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Corollary 4.3 (Continuity) The matrix lower bound is a continuous func-
tion on the open set of matrices with full rank.

Proof. A has full row rank if and only if det(AAt) 6= 0, so the set of such
matrices is open from the continuity of the determinant. Given such an A, for
every sufficiently small ε > 0, if ‖B‖ ≤ ε then A+ B has full rank. Hence by
Lemma 4.2, ∣∣∣‖A+B‖` − ‖A‖`

∣∣∣ ≤ ‖B‖ ≤ ε ,

which is the condition that ‖A‖` be a continuous function of A. The proof for
matrices of full column rank is identical

4.3 Multiplicative Inequalities

The multiplicative property of the matrix norm,

‖AB‖ ≤ ‖A‖ ‖B‖ ,

is much expanded by von Neumann and Goldstine’s properties for the lower
bound. The first inequality is a direct analogue of the norm’s inequality.

Lemma 4.4 (Product Rule) (Compare [16, p. 1043, equation (3.9)].) If
AB is not zero, then

‖A‖` ‖B‖` ≤ ‖AB‖` .

Proof. Suppose that A and B are m× n and n× p matrices, respectively.
Let Bk be the unit ball in Rk, and let rX = ‖X‖`. Since col(AB) ⊆ col(A) so
col(AB) = col(AB) ∩ col(A), hence

col(AB) ∩ rArBBm = col(AB) ∩ col(A) ∩ rArBBm .

By Lemma 2.3, col(A)∩rABm ⊆ ABn which after multiplication by rB becomes
col(A) ∩ rArBBm ⊆ rBABn, hence

col(AB) ∩ col(A) ∩ rArBBm ⊆ col(AB) ∩ rBABn .

Again by Lemma 2.3, col(B) ∩ rBBn ⊆ BBp so multiplying this by A gives

col(AB) ∩ rBABn ⊆ ABBp .

Altogether col(AB) ∩ rArBBm ⊆ ABBp. Invoking Lemma 2.3 one last time,

rAB = max { r : col(AB) ∩ rBm ⊆ ABBp} .

Since it has been shown that rArB lies in the set, so rArB ≤ rAB.

The other multiplicative inequalities mix the matrix norm and the matrix
lower bound. They can be reduced to fewer cases, as for Lemma 4.2, but here
the proof that treats each case separately is shorter.
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Lemma 4.5 (Mixed Product Rules) (Compare [16, p. 1043, equation (3.9)].)
If AB is not zero, then

‖AB‖`


≤
1
‖A‖ ‖B‖` ≤

2′

≤
2
‖A‖` ‖B‖ ≤

1′

 ‖AB‖
provided the following conditions are satisfied, respectively.

1. row(B) = row(AB) 2′. B has full row rank

or rank(B) = rank(AB)

or null(B) = null(AB)

or null(A) ∩ col(B) = {0}

2. col(A) = col(AB) 1′. A has full column rank

or rank(A) = rank(AB)

Note that hypothesis 1′ ⇒ 1, 2′ ⇒ 2, and the multiple hypotheses for each of
1 and 2 are equivalent.

Proof. (Part 1.) If row(B) = row(AB), then the row ranks are equal, so
rank(B) = rank(AB). This subtracted from the quantity of columns of B and
AB gives the nullities, respectively, which therefore are equal. Since it is always
true that null(B) ⊆ null(AB), if these have the same dimension then they are
equal. This means Bw 6= 0 implies ABw 6= 0 lest the null space grow, hence
null(A) ∩ col(B) = {0}. From this last hypothesis the others can be derived
in reverse order using the much same reasoning, so all are equivalent.

Suppose x ∈ col(B). By Definition 2.1 there is a w with Bw = x and
‖B‖` ‖w‖ ≤ ‖x‖, and there is a w′ with ABw′ = ABw and ‖AB‖` ‖w′‖ ≤
‖ABw‖. Altogether

‖AB‖`
‖A‖

‖w′‖ ≤ ‖ABw‖
‖A‖

=
‖Ax‖
‖A‖

≤ ‖A‖ ‖x‖
‖A‖

= ‖x‖ .

Since ABw′ = ABw and (by 1) null(A)∩col(B) = {0}, therefore Bw′ = Bw =
x. This is for any x ∈ col(B), so ‖AB‖`/‖A‖ ≤ ‖B‖`.

(Part 2.) This inequality has the same number of equivalent hypotheses as
part (1), but some of them are inconvenient to state because null( · ) is specific
to right-side, matrix-vector multiplication.

If y ∈ col(A), then (by 2) y ∈ col(AB), so by Definition 2.1 there is a w
with ABw = y and ‖AB‖` ‖w‖ ≤ ‖y‖. Let x = Bw so ‖x‖ ≤ ‖B‖ ‖w‖, which
implies

‖AB‖`
‖B‖

‖x‖ ≤ ‖AB‖` ‖w‖ ≤ ‖y‖ ,
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with Ax = y. This is for any y ∈ col(A), hence ‖AB||`/‖B‖ ≤ ‖A‖`.
(Part 2′.) Suppose x 6= 0. Since (by 2′) B has full row rank, by Definition

2.1 there is a w with Bw = x and ‖B‖` ‖w‖ ≤ ‖x‖. Therefore,

‖Ax‖
‖x‖

≤ ‖ABw‖
‖B‖` ‖w‖

≤ ‖AB‖ ‖w‖
‖B‖` ‖w‖

=
‖AB‖
‖B‖`

.

This is for any x 6= 0, so

‖A‖ = max
x 6= 0

‖Ax‖
‖x‖

≤ ‖AB‖
‖B‖`

.

(Part 1′.) Choose w 6= 0 that attains ‖B‖, that is, ‖Bw‖ = ‖B‖ ‖w‖. By
Definition 2.1 there is an x with Ax = ABw and ‖A‖` ‖x‖ ≤ ‖ABw‖. Since
(by 1′) A has full column rank, hence x = Bw. Altogether,

‖A‖` ‖B‖ ‖w‖ = ‖A‖` ‖Bw‖ = ‖A‖` ‖x‖ ≤ ‖ABw‖ ≤ ‖AB‖ ‖w‖ .

The following matrices provide counterexamples to Lemma 4.5’s inequali-
ties. Let

A =

 c
1

0

 and B =

 0
1

c

 ,
where c is to be determined. One one hand, if 0 < c < 1, then by Lemma
3.3 for spectral norms, ‖A‖ = ‖B‖ = 1, ‖A‖` = ‖B‖` = c, and ‖AB‖` = 1.
Thus ‖AB‖` 6≤ ‖A‖ ‖B‖` and ‖AB‖` 6≤ ‖A‖` ‖B‖. On the other hand, if
1 < c, then ‖A‖ = ‖B‖ = c, ‖A‖` = ‖B‖` = 1, and ‖AB‖ = 1. In this case
‖A‖ ‖B‖` 6≤ ‖AB‖ and ‖A‖` ‖B‖ 6≤ ‖AB‖.

4.4 Inner Product Identities

Identities of this kind,

‖A‖ = max
‖x‖ = 1

‖Ax‖ = max
‖x‖ = 1

max
‖y‖∗ = 1

ytAx ,

are a natural starting point for investigations in matrix analysis. One of the
corresponding minimizations,

min
‖x‖ = 1

‖Ax‖ ,

serves as von Neumann and Goldstine’s definition for their matrix lower bound
[16, p. 1042, equation (3.1.b)]. Here it is found that such expressions give a
nonzero value only for full rank matrices. The breakdown of these identities in
the rank deficient case may be a reason why a comprehensive, nonzero matrix
lower bound has not been defined previously.
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Lemma 4.6 (Inner Product Formulas) (Compare [16, p. 1042, equation
(3.1.b)].) If A is not zero, then

1. min
‖x‖ = 1

‖Ax‖

2. min
‖x‖ = 1

max
‖y‖∗ = 1

ytAx

3. − max
‖x‖ = 1

min
‖y‖∗ = 1

ytAx


=

 ‖A‖` if A has full column rank,

0 else,

4. min
‖y‖∗ = 1

‖Aty‖∗

5. min
‖y‖∗ = 1

max
‖x‖ = 1

ytAx

6. − max
‖y‖∗ = 1

min
‖x‖ = 1

ytAx


=

 ‖A‖` if A has full row rank,

0 else.

Proof. Suppose that A is an m × n matrix. (Identity 1.) If A has full
column rank, then null(A) = {0} so by Lemma 2.4,

‖A‖` = min
{x : Ax 6= 0}

max
{z : Az = 0}

‖Ax‖
‖x+ z‖

= min
{x : Ax 6= 0}

‖Ax‖
‖x‖

= min
‖x‖ = 1

‖Ax‖ .

If A does not have full column rank, then Ax = 0 for some x 6= 0 so the
minimum attains 0.

(Identity 2.) For any vector Ax ∈ Rm,

‖Ax‖ = ‖(Ax)∗∗‖ = max
f ∈ (Rm)∗

‖f‖ = 1

(Ax)∗∗(f) = max
f ∈ (Rm)∗

‖f‖ = 1

f(Ax) = max
‖y‖∗ = 1

ytAx ,

so identities (1) and (2) are equivalent.
(Identity 3.) This identity is the double negative of identity (2),

min
‖x‖ = 1

max
‖y‖∗ = 1

ytAx = −− min
‖x‖ = 1

max
‖y‖∗ = 1

ytAx

ytAx

= − max
‖x‖ = 1

min
‖y‖∗ = 1

−ytAx

= − max
‖x‖ = 1

min
‖y‖∗ = 1

ytAx .

(Identity 4.) If A has full row rank, then At has full column rank, so by
Lemma 4.1 and identity (1),

‖A‖` = ‖At‖∗` = min
‖y‖∗ = 1

‖Aty‖∗ .



Joseph F. Grcar 20

If At does not have full column rank, then there is a nonzero y ∈ Rm with
Aty = 0, so minimization attains the value 0.

(Identities 5, 6.) These follow from identity (4) as (2, 3) follow from (1),
or alternatively from (2, 3), respectively, as (4) is derived from (1). Either
approach introduces members of (Rn)∗∗ that must be removed by using the
natural isometric isomorphism between Rn and (Rn)∗∗.

5 Applications

Like the matrix norm, the matrix lower bound supplies bounds and estimates
for matrices and vectors. Each use perhaps could be handled by reasoning
specific to the problem at hand, but a systematized collection of properties
undeniably simplifies the task. The properties of the matrix norm are well
known; the following examples suggest that some familiarity with the matrix
lower bound might be useful as well.

Here is an overview of the examples. The first two deal with well-known
formulas for distance-to-singularity, §5.1, and condition numbers, §5.2. It is
found that the formulas can be meaningfully generalized simply by replacing
the ‖A−1‖−1 in them with ‖A‖`. Example three, §5.3, interprets Section 4.4’s
inner product identities in terms of convex analysis. Finally, both the first and
fourth examples, §5.1 and §5.4, illustrate the use of matrix lower bounds to
construct Cauchy sequences in existence proofs.

5.1 Linear Algebra: Rank Deficiency

C. Eckart and G. Young [5] apparently were the first to determine the distance
from a given matrix to the set of matrices with lower rank. (Their priority is
endorsed by Blum et al. [4].) Eckart and Young’s interest in this problem was
motivated by the question of how best to approximate one matrix by another.
They considered the Frobenius norm and m × n matrices; the basis of their
analysis was the singular value decomposition. W. Kahan [11, p. 775] treated
essentially arbitrary operator norms and nonsingular matrices. The following
Theorem is a generalization of Kahan’s case to matrices of full rank.

Theorem 5.1 (Rank Deficiency) If A has full rank, then ‖A‖` is the dis-
tance from A to the set of a rank deficient matrices,

‖A‖` = min {‖E‖ : rank(A+ E) < rank(A)} .

Proof. Since both ‖ · t‖ = ‖ · ‖∗ and by Lemma 4.1 ‖ · t‖` = ‖ · ‖∗` , it suffices
to consider the case that A has full row rank.

(Part 1.) Suppose ‖E‖ < ‖A‖`. Since A has full row rank, for any y there
is some x1 with Ax1 = y. There also is some x2 with A(x2 − x1) = −Ex1.
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Finally invoking Definition 2.1, for n ≥ 2 there is an xn+1 with A(xn+1−xn) =
−E(xn − xn−1) and ‖A‖` ‖xn+1 − xn‖ ≤ ‖E(xn − xn−1)‖ ≤ ‖E‖ ‖xn − xn−1‖.
Combining the inequalities shows, for n ≥ 2,

‖xn+1 − xn‖ ≤
(
‖E‖
‖A‖`

)n−2

‖x2 − x1‖ ,

so {xn} is a Cauchy sequence because ‖E‖/‖A‖` < 1. Let x∗ be the limit of
the sequence. Passing to the limit in

Axn+1 = Ax1 +
n∑
i=1

A(xi+1 − xi) = y − Ex1 −
n−1∑
j=1

E(xj+1 − xj) = y − Exn

proves Ax∗ = y − Ex∗, hence y ∈ col(A + E). This is for any y, therefore
A+ E has full row rank.

(Part 2.) Let φ and ψ be the functions shown in Figure 1, and let ψ−1

attain its norm at y0 ∈ col(A). Therefore from Lemma 2.6,

‖A‖−1
` = ‖ψ−1‖ =

‖[x0]‖
‖y0‖

,

where ψ−1(y0) = [x0] ∈ Rn/null(A). The Hahn-Banach theorem says there
is a functional g : Rn/null(A) → R with g([x0]) = 1 and ‖g‖ = 1/‖[x0]‖.
Define e : Rn/null(A) → col(A) by e([x]) = g([x])y0. Thus e([x0]) = y0 and
‖e‖ = ‖y0‖/‖[x0]‖ = ‖A‖`. The map ψ − e has a nontrivial kernel because
both ψ and e transform [x0] to y0. Since

dim(ker(ψ − e)) + dim(im(ψ − e)) = dim(Rn/null(A)) = dim(col(A)) ,

therefore dim(im(ψ− e)) < dim(col(A)). The composite map e◦φ : Rn → Rm

is represented by an m× n matrix, E. Now A− E represents ψ ◦ φ− e ◦ φ =
(ψ− e)◦φ, so dim(col(A−E)) ≤ dim(im(ψ− e)) < dim(col(A)), hence A−E
is rank deficient. Finally, ‖E‖ = ‖e ◦ φ‖ ≤ ‖e‖ ‖φ‖ = ‖e‖ = ‖A‖` because
‖φ‖ = 1, but ‖E‖ ≥ ‖A‖` by Part (1), so ‖E‖ = ‖A‖`.

(Alternate Part 2.) It is easier to find a perturbation for At. By Corollary
2.5 there are an x and y so Aty = x and ‖At‖∗` ‖y‖∗ = ‖x‖∗. Let u be a
unit vector at which ‖y‖∗ is attained, that is, ‖u‖ = 1 and ytu = ‖y‖∗. Let
Et = xut/‖y‖∗ so by Lemma 3.2 ‖Et‖∗ = ‖x‖∗ ‖u‖∗∗/‖y‖∗ = ‖x‖∗/‖y‖∗ =
‖At‖∗` . Since At has full column rank, but At − Et has a null space because
(At − Et)y = 0, thus At − Et and A − E are rank deficient. Finally, the
perturbation E has the desired size because ‖E‖ = ‖Et‖∗ = ‖At‖∗` = ‖A‖`
by Lemma 4.1. This approach is shorter than the first Part (2) but it is less
direct if the need to prove Lemma 4.1 is taken into account.
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5.2 Numerical Analysis: Condition Numbers

Von Neumann and Goldstine’s use [16, pp. 1073–5, section 6.6] of their matrix
lower bound occurs in a long proof that is beyond the scope of this paper.
Their subject was the effect of rounding errors on numerical calculations, and
the following example is in the spirit of their discussion.

Von Neumann and Goldstine suggested [16, p. 1092] that it would be useful
to interpret numerical algorithms as though they proceed without rounding
error, provided the calculations begin at some perturbed form of the initial
data. The idea is that the algorithm exactly applied to the perturbed data
should give the same result as the algorithm applied with rounded arithmetic
to the unperturbed data. This concept became the central tenet of backward
rounding error analysis. Von Neumann and Goldstine left their readers to
work out, “in several different ways” [16, p. 1093], what effect the perturbed
data would have on the solution of a problem.

To that end, suppose that the equations Ax = b are consistent, and suppose
an x̄ has been given that solves a related problem (A + E)x̄ = b where E is
von Neumann and Goldstine’s data perturbation. Since Ex̄ = b − Ax̄ lies in
the column space of A, Definition 2.1 says there is a δx with Aδx = Ex̄ and
‖A‖` ‖δx‖ ≤ ‖Ex̄‖. Let x′ = x̄+ δx. This x′ solves the original equations,

Ax′ = A(x̄+ δx) = b− Ex̄+ Ex̄ = b .

It is also close to the erroneous solution,

‖x′ − x̄‖
‖x̄‖

=
‖δx‖
‖x̄‖

≤ ‖Ex̄‖
‖x̄‖ ‖A‖`

≤ ‖E‖
‖A‖`

,

provided only that the data perturbation, E, is small compared to ‖A‖`.
A calculation that produces an x̄ that can be accounted for by an E that

is small relative to the data, A, is called numerically stable. In this case, x̄ is
relatively close to an exact solution,

‖x′ − x̄‖
‖x̄‖

≤ ‖E‖
‖A‖`

=
‖A‖
‖A‖`

‖E‖
‖A‖

,

provided only that the ratio ‖A‖/‖A‖` is small. When A is square and invert-
ible, then this quantity specializes to the well-known value κ(A) = ‖A‖ ‖A−1‖
by Lemma 3.1.

In general, a condition number for a problem is a bound for the ratio of some
measure of the solution error to some measure of the data perturbations [21,
p. 29]. The matrix lower bound makes it possible to say, in von Neumann and
Goldstine’s terminology, that the condition number of any consistent system
of linear equations is the ratio of the matrix upper and lower bounds.
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Theorem 5.2 (Condition Number) If Ax = b 6= 0 is a consistent system
of linear equations, then a condition number for these equations is

κ(A) =
‖A‖
‖A‖`

.

This is a condition number in the sense that for any proposed solution x̄ and
any von Neumann perturbation E, with (A + E)x̄ = b, there is some x′ with
Ax′ = b and

‖x′ − x̄‖
‖x̄‖

≤ κ(A)
‖E‖
‖A‖

.

In formulas of this kind it is customary to replace the denominator’s x̄ by
the exact solution, here x′, at the cost of a marginally weaker bound.

Corollary 5.3 Continuing Theorem 5.2, if

κ(A)
‖E‖
‖A‖

< 1 ,

then
‖x′ − x̄‖
‖x′‖

≤ κ(A)
‖E‖
‖A‖

(
1− κ(A)

‖E‖
‖A‖

)−1

. (13)

Proof. Let δ = κ(A) ‖E‖/‖A‖, so from the triangle inequalities and by
Theorem 5.2,

‖x̄‖
‖x′‖

− 1 =
‖x̄‖ − ‖x′‖

‖x′‖
≤ | ‖x̄‖ − ‖x′‖ |

‖x′‖
≤ ‖x′ − x̄‖

‖x′‖
≤ δ

‖x̄‖
‖x′‖

.

This rearranges to
‖x̄‖
‖x′‖

≤ 1

1− δ

which, when multiplied by the Theorem’s inequality, gives the Corollary’s
result.

Equation (13) is new in that it has been derived previously only when A
is square and invertible. H. Wittmeyer [22] apparently was the first to find
a bound of this form. (His priority is endorsed by Stewart and Sun [19].)
Wittmeyer dealt with nonsingular matrices and the 2-norm. The bound in
exactly the form of equation (13) seems to be due to J. Wilkinson [21, p. 93,
equation (12.15)] for the condition number κ(A) = ‖A‖ ‖A−1‖. Wilkinson
treated nonsingular matrices and essentially arbitrary operator norms. Here,
Wittmeyer and Wilkinson’s results have been generalized to any consistent
system of equations for any m× n matrix.
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5.3 Optimization Theory: Min-max Identity

John von Neumann [14] proved the original minimax theorem for a problem
whose optimal value is the expected outcome of certain parlor games, and
thereby initiated game theory (at age twenty-two). Many people including
von Neumann himself have since generalized the minimax theorem [18]. A
familiar result similar to one that von Neumann actually proved is,

min
x ∈ K

max
y ∈ L

ytAx = max
y ∈ L

min
x ∈ K

ytAx ,

where A is any matrix, and K and L ⊆ Rn are compact and convex.
Von Neumann’s example of the minimax theorem suggests that it may be

fruitful to look for identities among optimization problems that involve two
convex sets. A likely candidate for abstraction is Lemma 4.6’s inner product
identity,

min
‖x‖ = 1

max
‖y‖∗ = 1

ytAx = ‖A‖` = min
‖y‖∗ = 1

max
‖x‖ = 1

ytAx ,

where A is nonsingular. The two convex sets in this formula are the unit balls
around the origin for the norms ‖ · ‖ and ‖ · ‖∗. It is interesting that this
apparently algebraic identity involving the matrix lower bound can be derived
from the following relationship that depends only on geometric properties of
convex sets.

Theorem 5.4 (Min-max Identity [9]) If K ⊆ Rn and L∗ ⊆ (Rn)∗ are
compact, convex, and contain the origin in their interiors, then

min
x ∈ bd(K)

max
f ∈ bd(L∗)

f(x) = min
f ∈ bd(L∗)

max
x ∈ bd(K)

f(x) . (14)

Note that equation (14) resembles the minimax theorem in that the sets are
exchanged, but unlike von Neumann’s case the min and the max are not
reversed.

The proof of Theorem 5.4 involves ideas from convex analysis that while
elementary are beyond the scope of this paper. The theorem is a true du-
ality result in that its proof relies on the polar duality relationship among
convex sets that contain the origin. Nevertheless equation (14) cannot be
characterized as a problem in convex optimization because the feasible sets
are not convex. Moreover, the set of optimal pairs (x, f) that jointly attain
the min-max of both sides in the equation needn’t be convex although it has
in interesting geometric description. For further discussion see [9].

5.4 Real Analysis: Collocated Level Sets

Suppose D is an open set in Rm, and suppose f : D → Rn is continuously
differentiable. By analogy with real-valued functions, the set
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f−1(y) = {x : f(x) = y}

may be called a level set of f .
At every x0 ∈ D where the Jacobian matrix Df(x0) has full row rank, the

implicit function theorem says that f−1(f(x0)) contains a smooth curve that is
parameterized by an implicitly defined function. Usually the implicit function
is emphasized, but the theorem also can be interpreted as describing the level
set [3, p. 384, theorem 41.9 part (b)]: there is neighborhood Nx0 of x0 where
the implicit function’s graph is all of Nx0 ∩ f−1(f(x0)).

Here, a geometric comparison is made between all the level sets of f and
those of its tangent function at x0. Near x0, the corresponding level sets are
always present and they are asymptotically identical. The proof of this is a
modification of a construction apparently due to L. M. Graves [8], see also [3,
p. 378, theorem 41.6]. The matrix lower bound supplies a critical estimate in
this construction.

The proof also depends on an inequality form of the mean value theorem
that is valid for higher dimensions. If f is continuously differentiable, then for
every x0 and every ρ > 0 there is a neighborhood N (15)

x0
(ρ) of x0 where

x, x′ ∈ N (15)
x0

(ρ) ⇒ ‖f(x)− f(x′)−Df(x0)(x− x′)‖ ≤ ε ‖x− x′‖ . (15)

This inequality actually is equivalent to its hypothesis that the derivative be
continuous [17, p. 72, lemma 3.2.10]. It has been discussed many times, see
[3, p. 377, lemma 41.4] and [12, p. 212, notes for §7.1–4].

Theorem 5.5 (Collocated Level Sets) Suppose D ⊆ Rm is a neighborhood
of x0, and suppose f : D → Rn is continuously differentiable. Let T (x) be the
linear function that is tangent to f(x) at x0,

T (x) = f(x0) +Df(x0)(x− x0) .

Suppose the matrix Df(x0) has full row rank. For every ε > 0 there is a
neighborhood Nx0(ε) of x0 where x ∈ Nx0(ε) implies

1. ∃ xT with ‖xT − x‖ ≤ ε ‖x− x0‖ and T (xT ) = f(x), and

2. ∃ xf ∈ D with ‖xf − x‖ ≤ ε ‖x− x0‖ and T (x) = f(xf ).

Proof. The proof is based on the neighborhood N (15)
x0

(ρ) in equation (15)
for a ρ determined from ε as follows. Let δ = ε/(1+ε) < 1. Let ` = ‖Df(x0)‖`.
Use the notation Bc(r) for the open ball of center c and radius r. It is always
possible to find an r > 0 so that cl(Bx0(r)) ⊆ N (15)

x0
(δ`). The neighborhood in

the statement of the theorem is then

Nx0(ε) = Bx0(r(1− δ)) ⊆ cl(Bx0(r)) ⊆ N (15)
x0

(δ`) ⊆ D .
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In both parts (1) and (2), suppose x ∈ Nx0(ε).
(Part 1.) Since Df(x0) has full row rank, Definition 2.1 says there is an

xT with
Df(x0)(xT − x) = f(x)− T (x) ,

‖Df(x0)‖` ‖xT − x‖ ≤ ‖f(x)− T (x)‖ .

The equality and some algebra imply T (xT ) = f(x), while the inequality and
equation (15) for ρ = δ` and x′ = x0 imply

‖xT − x‖ ≤ ‖f(x)− T (x)‖
‖Df(x0)‖`

≤ δ`‖x− x0‖
`

= δ‖x− x0‖ < ε‖x− x0‖ . (16)

(Part 2.) Let x1 = x. With this notation equation (16) shows that the
following conditions are satisfied for j = 0.

(1j) ‖xj+1 − xj‖ ≤ δj ‖x− x0‖

(2j) ‖f(xj+1)− T (x)‖ ≤ δ` ‖xj+1 − xj‖

Notice that summing (1j) for 0 ≤ j ≤ k gives

‖xk+1 − x0‖ ≤
k∑
j=0

‖xj+1 − xj‖ ≤
1− δk+1

1− δ
‖x− x0‖ .

This combines with the choice x ∈ Bx0(r(1− δ)) to place xk+1 ∈ cl(Bx0(r)) ⊆
D. Therefore the evaluation of f(xk+1) in condition (2k) is always well-defined
provided that (1j) holds for 0 ≤ j ≤ k.

Suppose x0, x1, . . . , xn have been constructed to satisfy (1j) and (2j) for
0 ≤ j ≤ n− 1. As in Part (1) — but note the change of sign — Definition 2.1
says there is an xn+1 with

Df(x0)(xn+1 − xn) = − [f(xn)− T (x)] ,

‖Df(x0)‖` ‖xn+1 − xn‖ ≤ ‖f(xn)− T (x)‖ .

The inequality and conditions (2n−1) and (1n−1) imply condition (1n),

‖xn+1 − xn‖ ≤
‖f(xn)− T (x)‖
‖Df(x0)‖`

≤ δ`‖xn − xn−1‖
`

≤ δ`δn−1‖x− x0‖
`

.

It is therefore possible to evaluate f(xn+1). Condition (2n) now holds since

‖f(xn+1)− T (x)‖ = ‖f(xn+1)− f(xn)−Df(x0)(xn+1 − xn)‖

≤ δ`‖xn+1 − xn‖ .

The equality is from the choice of xn+1, while the inequality is from equation
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(15), which is applicable because xn, xn+1 ∈ cl(Bx0(r)) ⊆ N (15)
x0

(δ`).
In this way a sequence {xn} ⊆ cl(Bx0(r)) is constructed that satisfies

conditions (1n) and (2n) for all n. This is a Cauchy sequence by (1n), so it has
a limit xf ∈ cl(Bx0(r)) ⊆ D. Passing to the limit in (2n) shows f(xf ) = T (x).
Summing (1j), now for 1 ≤ j ≤ n, gives

‖xn+1 − x‖ ≤
n∑
j=1

‖xj+1 − xj‖ ≤ δ
1− δn

1− δ
‖x− x0‖ ,

which in the limit becomes ‖xf − x‖ ≤ δ(1− δ)−1‖x− x0‖ = ε‖x− x0‖.

6 Summary

6.1 Definitions

Definition 2.1 (Matrix Lower Bound). Let A be a nonzero matrix. The
matrix lower bound, ‖A‖`, is the largest of the numbers, m, such that
for every y in the column space of A, there is some x with Ax = y and
m ‖x‖ ≤ ‖y‖.

Lemma 2.2 (Existence and Bounds). The matrix lower bound exists and
is positive. In particular,

‖B‖−1 ≤ ‖A‖` ≤ ‖A‖

where B is any matrix that satisfies the Penrose condition ABA = A.

Lemma 2.3 (Geometric Characterization). Let A be a nonzero m × n
matrix, and let Bm and Bn be the unit balls in Rm and Rn, respectively.
The matrix lower bound ‖A‖` is the radius of the largest ball — with
respect to the subspace col(A) — that is centered at the origin and
contained in ABn,

‖A‖` = max { r : col(A) ∩ rBm ⊆ ABn} .

Lemma 2.4 (Min-max Characterization). If A is not zero, then

‖A‖` = min
y ∈ col(A)\{0}

max
{x : Ax = y}

‖y‖
‖x‖

= min
{x : Ax 6= 0}

max
{z : Az = 0}

‖Ax‖
‖x+ z‖

.

Corollary 2.5 (Attainment). There is a nonzero x with ‖A‖` ‖x‖ = ‖Ax‖.
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Lemma 2.6 (Functional Analysis Characterization). LetA be a nonzero
m × n matrix, and let ψ : Rn/null(A) → col(A) be the canonical map
defined by ψ([x]) = Ax. Then

‖ψ−1‖−1 = ‖A‖`

where the norm of ψ−1 is the operator norm induced from the norms on
col(A) and Rn/null(A).

6.2 Examples

Lemma 3.1 (Invertible Matrices). IfA is invertible, then ‖A‖` = ‖A−1‖−1.

Lemma 3.2 (Rank 1 Matrices) If A is a rank 1 matrix, where A = uvt for
some u ∈ Rm and v ∈ Rn, then ‖A‖` = ‖u‖ ‖v‖∗, where ‖ · ‖∗ is the dual
of the vector norm for Rn.

Lemma 3.3 (Spectral Norms). If A is not zero, and if the vector norms are
2-norms, then ‖A‖` = σmin, where σmin is the smallest nonzero singular
value of A.

Corollary 3.4 (Separation) If A is symmetric and positive definite, and if
the vector norms are 2-norms, then

‖A‖` ≤ max
i
Ai,i ≤ ‖A‖ .

6.3 Properties

Lemma 4.1 (Transpose Equality). If A is not zero, then

‖A‖` = ‖At‖∗` .

Lemma 4.2 (Triangle Inequalities). If A and A+B are not zero, then

‖A‖` − ‖B‖ ≤
1
‖A+B‖` ≤

2
‖A‖` + ‖B‖ ,

provided the following conditions are satisfied, respectively.

1. col(A) ⊆ col(A+B) 2. col(A+B) ⊆ col(A)

or row(A) ⊆ row(A+B) or row(A+B) ⊆ row(A)

Corollary 4.3 (Continuity). The matrix lower bound is a continuous func-
tion on the open set of matrices with full rank.
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Lemma 4.4 (Product Rule). If AB is not zero, then

‖A‖` ‖B‖` ≤ ‖AB‖` .

Lemma 4.5 (Mixed Product Rules). If AB is not zero, then

‖AB‖`


≤
1
‖A‖ ‖B‖` ≤

2′

≤
2
‖A‖` ‖B‖ ≤

1′

 ‖AB‖
provided the following conditions are satisfied, respectively.

1. row(B) = row(AB) 2′. B has full row rank

or rank(B) = rank(AB)

or null(B) = null(AB)

or null(A) ∩ col(B) = {0}

2. col(A) = col(AB) 1′. A has full column rank

or rank(A) = rank(AB)

Note that hypothesis 1′ ⇒ 1, 2′ ⇒ 2, and the multiple hypotheses for
each of 1 and 2 are equivalent.

Lemma 4.6 (Inner Product Formulas). If A is not zero, then

1. min
‖x‖ = 1

‖Ax‖

2. min
‖x‖ = 1

max
‖y‖∗ = 1

ytAx

3. − max
‖x‖ = 1

min
‖y‖∗ = 1

ytAx


=

 ‖A‖` if A has full column rank,

0 else,

4. min
‖y‖∗ = 1

‖Aty‖∗

5. min
‖y‖∗ = 1

max
‖x‖ = 1

ytAx

6. − max
‖y‖∗ = 1

min
‖x‖ = 1

ytAx


=

 ‖A‖` if A has full row rank,

0 else.

6.4 Applications

Theorem 5.1 (Rank Deficiency). If A has full rank, then ‖A‖` is the dis-
tance from A to the set of a rank deficient matrices,

‖A‖` = min {‖E‖ : rank(A+ E) < rank(A)} .
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Theorem 5.2 (Condition Number). If Ax = b 6= 0 is a consistent system
of linear equations, then a condition number for these equations is

κ(A) =
‖A‖
‖A‖`

.

This is a condition number in the sense that for any proposed solution
x̄ and any von Neumann perturbation E, with (A + E)x̄ = b, there is
some x′ with Ax′ = b and

‖x′ − x̄‖
‖x̄‖

≤ κ(A)
‖E‖
‖A‖

.

Corollary 5.3 Continuing Theorem 5.2, if

κ(A)
‖E‖
‖A‖

< 1 ,

then
‖x′ − x̄‖
‖x′‖

≤ κ(A)
‖E‖
‖A‖

(
1− κ(A)

‖E‖
‖A‖

)−1

.

Theorem 5.4 (Min-max Identity) If K ⊆ Rn and L∗ ⊆ (Rn)∗ are com-
pact, convex, and contain the origin in their interiors, then

min
x ∈ bd(K)

max
f ∈ bd(L∗)

f(x) = min
f ∈ bd(L∗)

max
x ∈ bd(K)

f(x) .

Theorem 5.5 (Collocated Level Sets). Suppose D ⊆ Rm is a neighbor-
hood of x0, and suppose f : D → Rn is continuously differentiable. Let
T (x) be the linear function that is tangent to f(x) at x0,

T (x) = f(x0) +Df(x0)(x− x0) .

Suppose the matrix Df(x0) has full row rank. For every ε > 0 there is a
neighborhood Nx0(ε) of x0 where x ∈ Nx0(ε) implies

1. ∃ xT with ‖xT − x‖ ≤ ε ‖x− x0‖ and T (xT ) = f(x), and

2. ∃ xf ∈ D with ‖xf − x‖ ≤ ε ‖x− x0‖ and T (x) = f(xf ).

7 Problems

In large part this paper was inspired by John von Neumann. He is often
described, in lay terms, as someone to whom we are indebted for inventing
many useful branches of science and mathematics [13]. A modest conclusion
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to draw from this is that von Neumann had a special talent to inspire further
research.

Thus the best ideas for matrix lower bounds probably are to be found in
von Neumann and Goldstine’s paper. Although they do not consider matrix
lower bounds in the generality discussed here, the associations made in their
paper may indicate additional topics for study. Since their discussion of lower
bounds is juxtaposed with a treatment of matrix 2-norms, von Neumann and
Goldstine appear to suggest that best approximation problems may be solved
in other norms just as pseudoinverses solve them for the 2-norm. This is the
probably too-hopeful intent of the first two questions below.

1. What is the maximum of the ‖B‖−1 with ABA = A in Lemma 2.2?
Note that some B has a smallest norm so the maximum is attained.

2. When is there a B with ABA = A and ‖B‖−1 = ‖A‖` in Lemma 2.2?

3. What can be said about the function x = f(y) that attains the maximum
in Lemma 2.4’s equation (2)?

For the next three questions, let ‖A‖`, p be the matrix lower bound defined
with respect to vector spaces equipped with Hölder p-norms.

4. Does ‖A‖`, p have bounds analogous to Corollary 3.4’s bound for ‖A‖`, 2?

5. Are there formulas for ‖A‖`, 1 and ‖A‖`,∞ analogous to the well-known
formulas for ‖A‖1 and ‖A‖∞?

6. Using the well-known inequalities

1 ≤ ‖v‖p
‖v‖p′

≤ n1/p

n1/p′

where p ≤ p′ and n is the dimension of the vector v, what inequalities
can be established between ‖A‖`, p and ‖A‖`, p′?

7. Can the lower bound in Lemma 4.2 be replaced by its absolute value?
Note that von Neumann and Goldstine did not say it could.

8. Is there a commutative diagram that proves Lemma 4.4’s product rule?

9. Can any of the hypotheses for Lemma 4.5’s inequalities be weakened?

10. Can Theorem 5.1 be generalized to say that ‖A‖` is the distance to the
nearest matrix of lower rank even when A is already rank deficient?

11. As in Theorem 5.1, what is the distance to the nearest matrix whose
rank differs by a given amount?
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12. Let σ1 ≥ σ2 ≥ σ3 ≥ · · · be the singular values of a matrix. It is well
known that [7, p. 428, cor. 8.3.2]

σk(A)− σ1(E) ≤ σk(A+ E) ≤ σk(A) + σ1(E) . (17)

If A and A + E have full rank, then the choice k = rank(A) gives the
following special case of equation (17),

σmin(A)− σ1(E) ≤ σmin(A+ E) ≤ σmin(A) + σ1(E) . (18)

For the 2-norm σ1( · ) = ‖ · ‖, and by Lemma 3.3 σmin( · ) = ‖ · ‖`. This
shows that equation (18) also is a special case of Lemma 4.2’s triangle-
like inequality,

‖A‖` − ‖E‖ ≤ ‖A+ E‖` ≤ ‖A‖` + ‖E‖ . (19)

Finally, by Theorem 5.1 ‖ · ‖` is the distance (as measured by a general
operator norm) of the enclosed matrix to the nearest rank deficient ma-
trix. Can Lemma 4.2 be extended to replace the matrix lower bound
in equation (19) by the distance to the set of matrices of a given lower
rank?

13. Many celebrated theorems either interpret the singular values of general
matrices (or the eigenvalues of symmetric matrices) in terms of extremal
formulas, or bound them in terms of perturbational inequalities. Ex-
amples are the Courant-Fischer-Weyl theorem, the Wielandt-Hoffman
theorem, and the Cauchy interlace theorem. Are there similar results
that replace the singular values or the eigenvalues by the distances to
the nearest matrices having given changes of rank as measured by a
general operator norm?

14. The ε-and-δ estimates in Theorem 5.5 depend on the Jacobian matrix,
which is assumed to be continuous, and on its lower bound, which is
continuous by Corollary 4.3. Can this continuity be used to extend the
Theorem’s conclusions?

15. Do the constructions x 7→ xT or x 7→ xf in the proof of Theorem 5.5
lead to immediate proofs of the implicit or inverse function theorems?

Some of the proofs in this paper implicitly use the Heine-Borel theorem.
That theorem is why a matrix attains its norm while a linear transformation
among Banach spaces in general does not. Most of the statements of the
theorems in this paper, however, are oblivious to dimension. Banach himself
showed that a linear transformation from one Banach space onto another has
lower bounds. Those lower bounds have a supremum which is a lower bound
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itself from the considerations underlying Lemma 2.3. Thus it should be pos-
sible to obtain many of the conclusions of this paper by replacing min’s and
max’s by inf’s and sup’s where necessary.

15. Restate Definition 2.1 and all the results in this paper for linear trans-
formations among abstract spaces. To the extent possible, remove the
assumption that the underlying spaces have finite dimension.
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