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Abstract 

We present an elliptic free-space solver that offers vastly improved scalability over a previous 
variant of the algorithm. The new algorithmic chang('! enable us to scale up to 4096 processors 
of an mM SP system, and we are planning to port the solver to Blue Gene L. The solver employs 
a method of local corrections that avoids the need for costly communication, while retaining 
scalability of the method. Communication costs are small, on the order of a few percent of 
the total running time. The numerical overheads incurred are independent of the number of 
processors for a wide range of problem sizes. The solver currently handles for infinite-domain 
(free space) boundary conditions, but may be reformulated to accommodate other kinds of 
boundary conditions as well. 

1 Introduction 

Elliptic solvers for free space problems often scale poorly owing to the difficu1ty in treating the 
infinite-domain boundary conditions. While some of the underlying communication could be 
maBked by overlapping it with useful computation [15, 161 4, 3, 2], the approach is ultimately 
non-scalable, as the total cost of communication grows with the size of the problem (ALL: WE 
NEED TO CHECK THIS, BUT THAT's MY INTUITION in handling free space 
BCs). We present an alternative approach that algorithmically reformulates the solution, reducing 
the amount data communicated at the expense of additional computation. In particular, we use a 
local corrections strategy that divides the solution into low and high resolution components, and 
uses the low resolution component to reduce the amount of communication. The resultant algo
rithm employs a fixed number of communication and computation steps. The added computational 
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overheads are purely local work, and the cost is independent of the number of processors over a 
wide range of problem sizes. Our algorithm exploits elliptic regularity, an approach which is also 
employed by the fast multipole method [10], the method of local corrections for particle methods 
[1], the finite element of Bank and Holst [8], and the two-dimensional method of local corrections 
for free space problems[5, 7]. Results presented by Holst [II} include a rigorous proof that these 
types of algorithms can produce accurate results with little communication. 

We have previously reported early results with our solver, originally called Scallop. While 
that solver enabled us to avoid high communication overheads, computation of the infinite-domain 
boundary conditions became a bottleneck and numerical overheads hampered scalability beyond 
1,024 processors of an IBM SP system with POWER3 processors. We discuss algorithmic en
hancements that greatly reduce the computational overheads and diminish the total running time 
required to reach a solution. Our new solver, now called Chombo-MLC, solves elliptic partial differ
ential equations with infinite-domain (free space) boundary conditions, which are especially useful 
for certain astrophysics problems. While Chombo-MLC can be altered to handle other boundary 
conditions, we focus here on on the infinite-domain case. For purposes of simplification, we restrict 
the discussion to the Poisson equation. 

Unlike domain decomposition methods such as [14] which require multiple iterations between 
the local and non1ocal descriptions, Chombo-MLC does not perform repeated iterations between 
coarse and fine levels or several communication steps. Chombo-MLC reaches a solution to the 
Poisson equation in three steps and communicates data only twice. First, coarse grid data are 
communicated to generate a global coarse grid charge field. Second, coarse and fine boundary 
condition data are communicated once among neighboring regions. These communication costs are 
low in practice-on the order of a few percent-and come at the expense of computational (numerical) 
overhead. We show that the extra computation involved iB reasonable, and significantly, that the 
computational overhead iB independent of the number of processors for a wide range of problem 
sizes. As a result, we are able to demonstrate scalability on up to 4096 processors of an IBM SP 
system, and we plan future computations on thousands of processors. 

Our contribution to our prior work with Scallop comes in two parts. First, we greatly improve 
the speed of our serial infinite-domain solution by using the fast multipole method to calculate 
the necessary boundary conditions. Second, we now calculate coarse grid values necessary for 
the method of local corrections simultaneously with the initial local solutions, also using the fast 
multipole method. By calculating coarse grid values in the correction radius in this way, we are 
able to scale up to thousands of processors with much lower computational overhead. 

Chombo-MLC is representative of a class of algorithms that employ sophisticated numerical 
techniques to reduce communication costs. The techniques in turn require an appropriate software 
infrastructure to manage the underlying details, in particular the bookkeeping. To thiB end, the 
original version of Scallop was built with the KeLP programming system [9], a framework for 
implementing scientific applications on distributed memory parallel computers. KeLP provides 
geometric and communication abstractions that facilitated the development of Scallop without 
sacrificing performance. The current implementation of our solver is part of the Chombo package 
reference?, which provides many of the same geometric and communications abstractions as KeLP 
as well as infrastructure for adaptive mesh refinement. 

2 Preliminaries 

The equation we solve is the Poisson equation in three dimensions with a charge distribution p with 
compact support, i.e. the charge is only nonzero in a finite region of space. Specifically, we seek 
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Figure 1: Discretization. The outer boundary of the grid shown here corresponds to nh. The 
regular mesh, with spacing h represents the uniform discretization of nh. The charge field is non
zero within the colored region shown, also called the support of the charge p. The support of plies 
completely within nh. 

the solution 4> to 
fP 4> {)24> {)24> 

fj,4> = {)x2 + {)y2 + ()z2 = p(x, y, z) 

which has far-field behavior characterized by 

where R is the total charge: 

R = In p(il) dil, 

and the region n contains the support of the charge p. 

Iii ~ 00, 

For many engineering calculations, methods which are accurate to O(h2) provide a good balance 
between accuracy and work required. We seek a solution which is accurate to O(h2) over the 
discretized computational domain nIL, where h is the uniform discretization, as illustrated in Figure 
1. This computational domain corresponds to the index set of the discrete solution ¢IL, i.e. the 
indices of the underlying discrete mesh. 

Since our goal is to solve the problem on parallel processors, we partition nIL into a set of disjoint 
sub domains n~: 

nh = Un~. 
k 

Our method entails solving local problems on each of the n~ in parallel, as well as on a single 
coarsened global mesh nR. The spacing of this coarsened mesh is H = Ch, where C is a specified 
coarsening factor. 

We choose the domain nIL to be a rectangular region, nIL = [~U], where f and u are the integer 
vectors corresponding to the lower and upper comers of the region. The coarsened domain is then 
defined as 

where the operators L·J and r'l represent the floor and ceiling operators, respectively. 
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Figure 2: Domains used in James's algorithm, showing lengths in index space. 

Because our meshes are node-centered, the points of OH map directly onto corresponding points 
in Oh, and no averaging is required to coarsen the mesh data. Thus, we can coarsen the mesh by 
sampling the mesh without having to interpolate. In particular, we coarsen a fine grid representation 
using the sample operator SH: for each point Xc, we can find the coarse grid value "pH (xc) (where 
"pH has grid spacing H) by finding the fine grid point x at the corresponding position in"ph (with 
grid spacing h = Hie): 

For the discussion that follows, we also need one more bit of notation. The grow operation 
extends or shrinks an index domain by a uniform amount in each direction. If Oh = [~it] (where 
f = (lx, lv, lz) and i1 = (ux, ny, uz)), we define grow as 

h.... -. grow(O ,g) = [1 - (g, g, g), u + (g, g, g)]. 

When 9 < 0, grow returns a shrunken domain. 

3 The Method 

Our domain decomposition method is built upon a method for solving single-processor infinite
domain Poisson problems, as described previously in [6]. We will summarize the single-grid algo
rithm first, and then describe the domain decomposition algorithm. 

3.1 A Serial Infinite-Domain Poisson Solver 

Following the approach described in [12] and [13], we are able to calculate a solution to the Poisson 
equation with infinite-domain boundary conditions in four steps, using two solution grids. Given a 
charge on a grid Oh, the first solution grid, referred to here as the inner grid or Ok,g, is 81 points 
larger in each dimension than Ok. The second grid, called the outer grid or Oh,G, is larger still, 
expanded by 82 points from Oh,g in each dimension. The relationships among these three grids are 
depicted in Figure 2. The four steps required to calcu1ate the solution are as follows. 

1. Find the solution to the Poisson equation on the inner grid, Oh,g, using Dirichlet boundary 
conditions. 
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Figure 3: In step 3, multipole moments are calculated for each patch on anh,g, such as the one 
shaded in red. The multipole expansions are then evaluated at the coarse points of anh,G, plus 
an additional layer of width P, indicated with blue circles for one face. These evaluations are 
interpolated to the fine points of anh,G, located at intersections of the black lines, using two 
passes. The evaluation points of the first pass are shown as green diamonds. 

2. Calculate a charge, q, along the inner grid boundary equal to the normal derivative of initial 
solution at the inner grid boundary. 

3. Calculate boundary conditions at each point on the outer grid by numerically integrating the 
effect of the charge at the inner grid boundary: 

g(x) = ( G(x - iiJq(Y)dAy. 
laon.9 

4. Find the solution to the Poisson equation on the outer grid, nh,G, using the boundary condi
tions, g, just calculated. 

Our approach here is identical to the approach described previously in [6] except in the way the 
integration is performed in step 3. Previously, we integrated the charge from the inner grid onto 
a coarsened version of the outer grid, with mesh spacing H = h/O(Vii), and interpolated from 
the coarse grid to find necessary values on anh,G. Om straightforward integration required O(N3) 
work but significantly took more time to compute than the Dirichlet solutions on the inner and 
outer grids. 

In our current implementation, we perform the integration required for the boundary calculation 
using the fast multipole method (FMM). Each face of nh,g is divided into patches of C x C points. 
We then calculate the multipole moments of the charge up to order M on each patch. On each face 
of nh,G, for points on a mesh coarsened by C in each dimension and expanded by a coarse layer of 
points of width P, we add up the evaluations of multipole expansions due to all the faces of nh,9. 

Finally, we interpolate polynomially, one dimension at a time from the coarse mesh values to the 
remaining fine mesh points on the face. (See Figure 3.) 

Choosing C = Vii provides sufficient accuracy for the solution and allows the integration step 
to be completed in O((M2+ P)N2) work. The values of M and P are chosen with regard to accuracy 
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N 
16 
32 12 1.75 
64 12 1.38 
128 12 20 168 1.31 
256 16 24 304 1.19 
512 24 44 600 1.17 

1024 32 48 1120 1.09 
2048 48 80 2208 1.08 

Table 1: Values of the coarsening factor, C, annulus thickness, 82, and resulting expanded grid size, 
N G , for various input grid sizes N. The ratio of N G / N decreases for increasing N. 

requirements and are independent from N, 80 for a given degree of accuracy, the integration step 
requires O(N2) work. 

We should also note the constraints required on 81 and 82, the spacing between the grids Oh, 
Oh,g, and Oh,G. We have found that setting 81 0 has only small effects on the accuracy of our 
solutions and doing 80 allows us to minimize the size of the solution grids. Convergence requirements 
of the multipole method force us to choose 82 with more care, however. In order for the multipole 
expansions from a patch to converge, the distance from a patch center on aoh,g to the points on 
aoh,G, on which the expansion is evaluated, should be at least twice the radius of the patch. Here 
we define the radius of a patch as the maximum distance from the patch center to any point on the 
patch. Recall that we chose our patches to be C fine grid points square. Thus our patches have 
a radius of Ch/V?, and the distance requirement becomes S2h ~ 2(Ch/V?). We also need the 
number of cells along the length of Oh,G to be divisible by C. Combining these two requirements, 
we arrive at the following formula for 82: 

N 
2 

(1) 

In order to demonstrate the effect of these requirements, we show in Table 1 the necessary 
values of 82 for grid sizes, N, ranging from 16 to 2048 by powers of 2. Values of C are chosen to 
be close to the square root of N but also multiple of four. Note that the ratio of N G (the length 
of Oh,G) to N decreases as N increases. This implies that overhead will be smaller for solutions to 
larger infinite-domain problems. 

3.2 Domain Decomposition 

The domain decomposition algorithm described here is a finite-difference analogue of Anderson's 
method of local corrections [1]. Our algorithm consists of three computational steps interspersed 
by two communication steps, as described previously in [6]. 

1. INITIAL LOCAL SOLUTION. We calculate a local infinite-domain solution on each local sub
domain, k, augmented with an overlap region: 

A ..I.h,initial 
~19'f'k p~ on grow(O~, 8 + Cb). 

and construct a coarsened version of the solution, ¢f1initial, by sampling: 

¢:,ini.tial = SH (4)Z·initia') on grow (nf!, siC + b). 

6 



Here 8 is a correction radius, C is the coarsening factor, and b is the width of a layer for 
polynomial interpolation to be used in step 3. The ~19 operator represents the Laplacian 
calculated with a 19-point stencil of nearest neighbor points. The error characteristics of the 
19-point stencil are essential for maintaining O(h2) accuracy in the overall algorithm when 
combining the effects of coarse and fine grid data later OD. 

2. GLOBAL COARSE SOLUTION. We couple the individual local solutions by solving another 
Poisson equation on a coarsened mesh covering the entire domain. We first construct coars
ened local charge fields: 

{ 

1\ ,J"H initial (nH /C 1) ~ 19'f'k I on grow Uk ,8 - , 

o otherwise 

and then sum up these charge fields to form a global coarse representation of the charge: 

Then we solve 
~19t/JH = RH on grow (nH , 8/C + b) 

with infinite-domain boundary conditions. 

3. FINAL LOCAL SOLUTION. We solve 

~7t/J~ = p:onn~ 

with Dirichlet boundary conditions on an~: 

t/J~(x) = L t/J~/(X) + I (<pH (x) - L ¢:',initUU{x») 
k/:!lE9roW(O~inuial,s) kJ:xE9roW(O~, ,8) 

where I is the same interpolation operator used in the serial infinite-domain Poisson solver. 
Figure 4 depicts the regions from which data are taken to set boundary conditions on a face. 

Note that the algorithm does not require fine grid data at all points in grow(n~,8+rb). Specifi
cally, the algorithm does not need fine grid data outside of grow (nt:, s/r + b}. In order to complete 
steps 2 and 3, we only need the following data from step 1: 

• the solution at coarse grid values, ¢:,initial, on grow (nf!, 8/C + b), necessary for step 2, and 

• the solution at fine grid values, <pZ·initial, on the faces of grow (n~ , 8). 

To ensure accuracy of the method, we need 8 = 2C. 
As before, communication is only required in two phases: first, in constructing the global coarse 

charge field, and second, to set the boundary conditions for the final local solution. 
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Figure 4: An illustration of setting boundary values for a final local solve in step 3 of MLC. For the 
face shown in red in the upper figure, in a layout in which there are eight cubes, the lower figures 
show the regions from which data are copied from faces of different neighboring boxes. Solid green 
lines indicate the boundaries of the boxes n~,. The dashed lines indicate the boundaries of the 
boxes grow (n~/ oS), and the dotted lines indicate the boundaries of the boxes grow (n~/ s + Cb). 
Finer-grid data are copied to the red face from the nodes inside and on the edges of the regions 
shaded dark blue. Coarser-grid data are copied from nodes inside and on the edges of the regions 
shaded both dark and light blue, and then interpolated to nodes on the red face that are inside 
and on the edges of the regions shaded dark blue. 
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4 Performance Model 

As mentioned previously, the principle behind Chombo-MLC is to trade off communication against 
compu tation. We next discuss these trade offs and show that they are reasonable. We describe a 
performance model, and use it to show that in theory the overheads are reasonable. In the following 
two sections we reconcile our predictions with practice. 

In determining the computational overhead in Chombo-MLC, we will use the serial infinite
domain Poisson solver as a baseline. We will first show that the cost of our initial fine grid 
solutions is similar to the cost of a serial solution. The computational overhead in Chombo-MLC 
can be described as the sum of three costs: the extra computation required to calculate solutions 
on expanded local grids, the cost of the coarse grid solution, and the time required for the final 
local solutions on fine grid data. We will discuss each of these costs, and show that with the proper 
choice of a coarsening factor, Chombo-MLC should be able to scale to thousands of processors. 

4.1 Serial Infinite-Domain Poisson Solver 

Chombo-MLC reuses many of the same components as the serial infinite-domain Poisson solver. 
We will examine the computational costs involved in the serial solver first and compare this cost 
with the cost of the initial solutions in Chombo-MLC. 

For simplicity, let us consider only cubical domains with edge length N. The operation counts 
for each step of the algorithm described in Section 3.1 are as follows. 

1. Finding the solution to the Poisson equation on the inner grid using a fast (FFT) Poisson 
solver: O(N3 }ogN). 

2. Calculate a charge, q, along the inner grid boundary: O(N2). 

3. Calculate boundary conditions at each point on the outer grid using FMM: O(N2) 

4. Find the solution to the Poisson equation on the outer grid using a fast (FFT) Poisson solver: 
O(N3 10g N). 

Thus the serial infinite-domain solver operation count is bounded by the Dirichlet Poisson solve, 
and the overall computational cost of an infinite-domain solution is O(N3 log N). 

4.2 Practical Work Estimates 

Since the computation required by the Poisson solvers used in our algorithm is nearly proportional 
to the number of points for which a solution is being found (ignoring the weaker log N term in the 
previous work estimates), we propose the following work estimates on the basis of these grid sizes. 
First, let us define W as an estimate of the work required for a Poisson solution with Dirichlet 
boundary conditions on a mesh nh: 

W = size(nh), 

where the size operator returns the total number of points in the mesh nh. Similarly, let us refer 
to Wk as the work required to compute a Dirichlet solution on a subdomain n~. 

Recall that the infinite-domain boundary calculation requires the solution of a Dirichlet problem 
on an enlarged domain, as defined by Equation 1 and shown by example in Table 1. After calculating 
the extents of nh,g and nh,G according to these requirements, we can define a work estimate fon 
an infinite-domain solution as 
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and also W;d as the corresponding estimate for the work required to compute a local initial fine 
grid solution within our MLC method. 

Finally as an estimate of the total work per processor required for our MLC method, let 

W1Jllc W~rse + L (Wld + Wk) 
k aBSigned to P 

where W:a,..e an estimate of the work required to calculate the infinite-domain solution on the global 
coarse mesh. Note that to allow for the possibility of overdecomposition, multiple sub domains k 
may be assigned to a single processor P. 

4.3 Minimizing the Cost of the Coarse Grid Solution 

In comparing the computational cost of Chombo-MLC to a serial infinite-domain solver, the cost 
of computing the solution on the global coarse grid is overhead. We want to determine what range 
of problems can be solved with minimal computational overhead due to the coarse grid calculation. 
Our goal is to keep the cost of the coarse grid solution small enough that this overhead can be 
ignored. 

As before, let N be the length of a side, thus N3 is the total number of points. Let q be 
the number of subdomains on a side. Then rf is the total number of sub domains (the maximum 
number of processors) and 

is the length of a local fine su bdomain. 
Let C be the coarsening factor, as defined previously, such that the size of coarse grid, Nc, is 

N / C. Since the coarse grid solution is not parallelized, we want Nc < N f in order to minimize the 
overhead due to the coarse grid. Thus we have 

or 

N N 
-< 
C q 

q< C. 

4.4 Limits of Parallelism for the Method 

As in most numerical libraries, an important consideration is how to optimize parameter settings 
that affect performance. The performance of Chombo-MLC is most affected by the choice of two 
parameters: q and C. However, various factors constrain the choice of these parameters, as well as 
the intrinsic parallelism, and these constraints limit performance. 

When choosing the coarsening factor, C, we may affect both the size of the coarse grid solution 
and the size of the initial local solutions. Recall that our MLC algorithm requires us to find the 
initial local solutions on grids expanded by 2C in each direction. Thus increasing C may lead to 
extra work for the initial local solutions. As we have just seen in section 4.3, however, C needs to 
increase with q in order to keep the cost of the coarse solution in line with the local solutions. 

Since the serial infinite-domain solver requires an annulus itself, there is a range of problems 
for which our algorithm is most suitable. We would like the coarsening factor for our MLC solver 
to be less than or equal to half the annulus size required by the infinite domain solver, i.e. 82/2. 
The coarsening factor must also evenly divide the local grid size N J. The maximum number of 
processors is then dependent on the choice of the ratio between q and C. 
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q/C NJ 82 P N3 

1/2 64 12 2 4 1283 

1/2 128 20 4 64 5123 

1/2 256 24 4 64 10243 

1/2 512 44 8 512 40963 

1 64 12 4 64 2563 

1 128 20 8 512 10243 

1 256 24 8 512 20483 

1 512 44 16 4096 81923 

2 64 12 8 512 5123 

2 128 20 16 4096 20483 

2 256 24 16 4096 40963 

2 512 44 32 32768 163843 

Table 2: Limits of parallelism for our MLC method with q = C. The number of processors, P, is 
taken to be the total number of subdomains, q3. 

Table 2 shows the limits of parallelism in terms of the maximum number of processors and 
maximum problem size for various local problem sizes, N J, and ratios of q and C. If we assume, 
for instance that 1283 problems will easily fit in local memory, users willing to expend a factor of 
two more computational effort can reach problem sizes of 10243 using 512 processors. Users willing 
to expend a factor of eight more computational effort could reach a problem size of 20483 on 4096 
processors. 

4.5 Future Improvements 

The current implementation is limited by the relationship between the coarsening factor, C, and 
the number of sub domains per side, q. This restriction is due to computing the global coarse 
grid solution in serial. By parallelizing the global coarse solution we can vary C and q indepen
dently and extract significantly more parallelism from our MLC method. We have built a parallel 
implementation of the multipole calculation on the coarse grid infinite-domain solution and are con
sidering alternatives for efficiently parallelizing the Dirichlet solves on the coarse grid while keeping 
communication requirements low. If our efforts are successful, Chombo-MLC could efficiently use 
thousands of processors without incurring additional computational overhead on the local solutions. 

5 Results 

In this section we present computational results which demonstrate the low communication over
head of Chombo-MLC on up to 512 processors. We also compare our performance results with the 
estimates presented earlier in Section 4 

5.1 Hardware 

We ran on NERSC's Seaborg IBM SP system, located at the National Energy Research Scientific 
Computing Centerl Seaborg contains POWER3 SMP High Nodes interconnected with a "Colony" 

1 http:} /www.nersc.gov/nusers/resources/SP. 
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Figure 5: Grind time (processor-time per solution point) remains stable over a range of problem 
sizes. 

switch. Each node is an 16-way Symmetric Multiprocessor (SMP) based on 375 MHz Power-3 
processors2, sharing between 16 and 64 Gigabytes of memory, and running AIX version 5.1. 

Chombo-MLC is is written in a mixture of C++ and Fortran 77. We used the IBM C++ and 
Fortran 77 compilers, mpCC and mp:r:lf. C++ code was compiled with the IBM mpCC compiler, 
using options -02 -qarch=pwr3 -qtune=pvr3. Fortran 77 was compiled with mpxlf with -02 
optimization. We used the standard environment variable settings, and we collected timings in 
batch mode using loadleveler. The timings reported are based on wall-clock times, obtained with 
MPI_WtimeO. Each calculation was performed 3 times. Variations among the runs was less than 
10%. The times reported are for the runs with the shortest total times. 

Due to a memory bug in the current version of our code, some simulations failed to run in the 
memory available. In order to complete our simulations for this, draft of our manuscript, we ran 
the 32 processor simulation on 4 nodes (using 8 processors per node rather than 16) and we ran 
the 512 processor simulation on 128 nodes (using 4 processors per node rather than 16). We are 
working on a fix to this bug and will have updated results in time for the camera-ready deadline. 

5.2 Scalability 

In order to measure performance, we scaled the work linearly with the number of processors. 
Ideally grind time, the processor-time required per solution point, would remain constant. The 
scaled speed-up tests shown in Figure 5 demonstrate that Chombo-MLC scales well up to 512 
processors. The run parameters and timing results for the performance tests are shown in Table 3. 

Communication overhead is relatively low in Chombo-MLC. As shown in Figure 6, communi
cation overhead is less than 25% on up to 512 processors. 

As can be seen in Table 3, time spent on the coarse grid solutions is approximately one third 
the time spent on fine grid solutions. Ideally, the time required for coarse grid solutions would be 
negligible, but these results match our expectations since we chose values of C closer to q than 2q. 

2http://www-l.ibm.comJservers/ eserver jpseries./hardware/whitepapersjnighthawk.html 
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Input Parameters Times for Each Stage (seconds) Total Grind 
p q C N Local Red. Global Bnd. Final (sec) (psec) 

16 4 3 3843 32.43 2.16 13.84 2.14 4.90 56.01 15.83 
32 4 4 5123 30.87 1.40 13.61 1.85 5.82 53.91 12.85 
64 4 5 6403 45.80 7.54 13.92 5.14 7.76 82.27 20.09 
128 8 6 7683 38.23 8.25 14.21 11.39 4.94 77.50 21.90 
256 8 8 10243 45.89 6.73 14.06 10.78 6.02 85.73 20.44 
512 8 10 12803 32.82 1.98 13.59 2.51 7.44 58.64 14.32 

Table 3: Input parameters and timing breakdowns for runs. The Local and Global solutions require 
an infinite-domain solution, whereas the Final calculation solves a simpler Dirichlet problem. The 
time for Reduction (Red.) includes everything necessary to accumulate the coarsened local solutions 
into a single coarse grid for the Global solve. The time for Boundary (Bnd.) includes everything 
required to assemble correct boundary conditions for the calculation of the Final solution. P is the 
number of processors, q is the number of subdomains on a side, and C is the coarsening factor. 
Grind is the computation time per point, the grind time. Times may not sum exactly due to 
averaging. 

Communication Overhead 
I I I I I I 

- -

- -

- -

- -

- -

16 32 64 128 256 512 
processors 

Figure 6: Communication overhead is small. 
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P Time (sec) Wk Grind Time (psec) 
16 4.90 3.65 x 106 1.34 
32 5.82 4.29 x 106 1.36 
64 7.76 4.17 x 106 1.86 
128 4.94 3.65 x 106 1.35 
256 6.02 4.29 x 106 1.40 
512 7.44 4.17 x 106 1.78 

Table 4: Running times, points updated, and grind times for the final local solution phase of our 
MLC method. 

P Time (sec) Wk Grind Time (JLsec) 
16 4.90 13.06 x 10° 2.48 
32 5.82 13.95 x 106 2.21 
64 7.76 13.30 x 106 3.44 
128 4.94 13.06 x 106 2.93 
256 6.02 13.95 x 106 3.29 
512 7.44 13.30 x 1()6 2.47 

Table 5: Running times, points updated, and grind times for the initial local solution phase of our 
MLC method. 

In comparing our timing results to our work estimates, we start from the simplest building 
block and work up. In Table 4 we show the work estimates and running times for the final local 
solution phase, a simple Dirichlet Poisson solve, for each simulation which we ran. The grind time 
for these Dirichlet solutions ranges from 1.34 - 1.86 J..'sec and averages 1.52 p.aec over the range of 
problem sizes. We believe the variation in performance is largely due to inefficiencies of the FFTW 
solver on meshes sizes of non-powers of 2. 

Due to our choice of parameters, the global infinite domain solutions were performed on identical 
mesh sizes for all our problem sizes. Our work estimate for this stage of the computation, W~r8e is 
7.07 X 106 mesh points. The running times for this phase of the computation were fairly consistent, 
and as a result, the grind times for this phase of the computation vary only modestly, from 1.92 
- 2.01 JLsec. Comparing these grind times with those for the Dirichlet solutions, we infer that the 
fast multipole method for the infinite-domain boundary calculation adds approximately 30% to the 
running time above what would be required for the two Dirichlet solutions. This is a significant 
improvement over our previous Scallop solver where the infinite-domain boundary calculation, 
performed by rather straightforward numerical integration, dominated the entire solution. 

Grind times for the initial local solutions vary a good deal more than for the other phases, 
as shown in Thble 5. The grind times calculated are also larger than those for the global infinite 
domain calculation. In part, this may be due to the extra work required during the infinite
domain boundary calculation to calculate the extra coarse grid values which are required later for 
interpolation. 

We can also use the estimates of Section 4.2 to imagine the time required for an "ideal" infinite
domain solver. If we take the average of the grind times for the global infinite-domain solution 
(Table 4), 1.96 p.sec, and apply that to the required number of point updates for the global fine
grid problem, we can estimate a lower bound on Illl1ning times for infinite-domain calculations of 
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N3 W!P Ideal Time (sec) Actual Time (sec) Ratio 
3843 9.69 18.99 56.01 2.95 
5123 11.00 21.56 53.91 2.50 
6403 10.17 19.93 82.27 4.13 
7683 8.68 17.01 77.50 4.56 
10243 9.71 19.03 85.73 4.51 
12803 9.52 18.66 58.64 3.14 

Table 6: Running times, points updated, and grind times for the initial local solution phase of our 
MLC method. 

Code Input ParaDleters Times for Each Stage (seconds) Total Grind 
Version P q C N Loc. Red. Glob. Bnd. Fin. (sec) (psec) 

Scallop 16 4 3 3843 130.1 0.53 60.9 2.95 3.70 198.8 56.17 
Scallop 128 8 6 7683 187.7 1.89 67.3 6.42 4.42 270.7 76.49 

Chombo 16 4 3 3843 32.43 i 2.16 13.84 2.14 4.90 56.01 15.83 
Chombo 128 8 6 7683 38.23 8.25 14.21 11.39 4.94 77.50 21.90 

Table 7: Comparison of running times of current Chombo-MLC and previous Scallop version. 

various sizes. These estimates are compared to our actual running times in Table 6. The slowdown 
compared to an ideal solver ranges from roughly 2.5 to 4.6, trending only moderately higher with 
increasing numbers of processors. 

In summary, we were are able to scale a problem up from 16 to 512 processors with, at worst, a 
factor of 1. 7 increase in the grind time. Running times for each phase of our solver correlate fairly 
well with simple work estimates based on the number of points updated, with the global and local 
infinite-domain solutions taking slightly longer than the final Dirichlet solutions due to the extra 
work required for boundary condition calculations. Communication times are reasonably small for 
an elliptic partial differtial equation solver, generally staying well under 25% of the total running 
time. 

5.3 Comparison to Previous Version 

To our knowledge there are no other parallel finite-difference infinite-domain solvers with which we 
can compare our results. Our current results do show marked performance improvement over our 
previous Scallop implementation, however. The perfomance results from problem sizes for which 
we have direct comparisons are shown side by side in Table 7. The fast multipole method greatly 
reduces the cost of the infinite-domain boundary calculation in both the initial local solution and the 
global coarse grid solution. Communication times have increased somewhat but are still reasonable 
overall. The slightly greater communication times may indicate that further optimization is possible 
within the Chombo communication routines. 

6 Conclusions and Im.ture Work 

We have presented a scalable 3D Poisson solver for free space problems that utilizes a method of 
local corrections that, in practice, eliminates communication overheads. The method employs a 
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philosophy for embracing technological change that substitutes relatively inexpensive computation 
for relatively expensive communication. 

We described the design of the Chombo-MLC solver, which realizes our strategy. In practice, 
the performance of Chombo-MLC matches the expectations of our performance model quite well. 
Communication costs are less than one quarter of the total running time-generally significantly less
and total computation time is dominated by the time required for the initial fine grid calculations. 
The benefit of little communication comes at the expense of added computation, but this overhead 
is reasonable, and it remains almost constant, independent of the number of processors. 

We are currently investigating ways to parallelize the global infinite-domain solution at the 
center of Chombo-MLC algorithm. Even modest parallelism in this phase of the computation would 
enable significantly increased parallelism overall allowing us to make use of thousands of processors. 
At the same time, parallelizing the global infinite-domain calculation would lift restrictions imposed 
on the initial local solutions, reducing further the computational overhead incurred by the method. 
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