
· Th D'mensions with
A Scalable Parallel poisson Solver m ree . .1

Infinite-Domain Boundary CondItIons

Peter McCorquodale
Phillip Colen a

Applied Numerical Algorithms Group
Lawrence Berkeley National Laboratory

Berkeley, CA USA
{pwmccorquodale,pcolella}@lbl.gov

Gregory T. Balls
Scott B. Baden .'

D artment of Computer Science and ~ngIneeIlng
ep University of California, San Dlego

9500 Gilman Drive
La Jolla, CA 92093-0114 USA

{gballs,baden }@cs.ucsd.edu

28 February 2005

Abstract

We present an elliptic free-space solver that offers vastly improved scalability over a previous
variant of the algorithm. The new algorithmic chang('! enable us to scale up to 4096 processors
of an mM SP system, and we are planning to port the solver to Blue Gene L. The solver employs
a method of local corrections that avoids the need for costly communication, while retaining
scalability of the method. Communication costs are small, on the order of a few percent of
the total running time. The numerical overheads incurred are independent of the number of
processors for a wide range of problem sizes. The solver currently handles for infinite-domain
(free space) boundary conditions, but may be reformulated to accommodate other kinds of
boundary conditions as well.

1 Introduction

Elliptic solvers for free space problems often scale poorly owing to the difficu1ty in treating the
infinite-domain boundary conditions. While some of the underlying communication could be
maBked by overlapping it with useful computation [15, 161 4, 3, 2], the approach is ultimately
non-scalable, as the total cost of communication grows with the size of the problem (ALL: WE
NEED TO CHECK THIS, BUT THAT's MY INTUITION in handling free space
BCs). We present an alternative approach that algorithmically reformulates the solution, reducing
the amount data communicated at the expense of additional computation. In particular, we use a
local corrections strategy that divides the solution into low and high resolution components, and
uses the low resolution component to reduce the amount of communication. The resultant algo
rithm employs a fixed number of communication and computation steps. The added computational

1

overheads are purely local work, and the cost is independent of the number of processors over a
wide range of problem sizes. Our algorithm exploits elliptic regularity, an approach which is also
employed by the fast multipole method [10], the method of local corrections for particle methods
[1], the finite element of Bank and Holst [8], and the two-dimensional method of local corrections
for free space problems[5, 7]. Results presented by Holst [II} include a rigorous proof that these
types of algorithms can produce accurate results with little communication.

We have previously reported early results with our solver, originally called Scallop. While
that solver enabled us to avoid high communication overheads, computation of the infinite-domain
boundary conditions became a bottleneck and numerical overheads hampered scalability beyond
1,024 processors of an IBM SP system with POWER3 processors. We discuss algorithmic en
hancements that greatly reduce the computational overheads and diminish the total running time
required to reach a solution. Our new solver, now called Chombo-MLC, solves elliptic partial differ
ential equations with infinite-domain (free space) boundary conditions, which are especially useful
for certain astrophysics problems. While Chombo-MLC can be altered to handle other boundary
conditions, we focus here on on the infinite-domain case. For purposes of simplification, we restrict
the discussion to the Poisson equation.

Unlike domain decomposition methods such as [14] which require multiple iterations between
the local and non1ocal descriptions, Chombo-MLC does not perform repeated iterations between
coarse and fine levels or several communication steps. Chombo-MLC reaches a solution to the
Poisson equation in three steps and communicates data only twice. First, coarse grid data are
communicated to generate a global coarse grid charge field. Second, coarse and fine boundary
condition data are communicated once among neighboring regions. These communication costs are
low in practice-on the order of a few percent-and come at the expense of computational (numerical)
overhead. We show that the extra computation involved iB reasonable, and significantly, that the
computational overhead iB independent of the number of processors for a wide range of problem
sizes. As a result, we are able to demonstrate scalability on up to 4096 processors of an IBM SP
system, and we plan future computations on thousands of processors.

Our contribution to our prior work with Scallop comes in two parts. First, we greatly improve
the speed of our serial infinite-domain solution by using the fast multipole method to calculate
the necessary boundary conditions. Second, we now calculate coarse grid values necessary for
the method of local corrections simultaneously with the initial local solutions, also using the fast
multipole method. By calculating coarse grid values in the correction radius in this way, we are
able to scale up to thousands of processors with much lower computational overhead.

Chombo-MLC is representative of a class of algorithms that employ sophisticated numerical
techniques to reduce communication costs. The techniques in turn require an appropriate software
infrastructure to manage the underlying details, in particular the bookkeeping. To thiB end, the
original version of Scallop was built with the KeLP programming system [9], a framework for
implementing scientific applications on distributed memory parallel computers. KeLP provides
geometric and communication abstractions that facilitated the development of Scallop without
sacrificing performance. The current implementation of our solver is part of the Chombo package
reference?, which provides many of the same geometric and communications abstractions as KeLP
as well as infrastructure for adaptive mesh refinement.

2 Preliminaries

The equation we solve is the Poisson equation in three dimensions with a charge distribution p with
compact support, i.e. the charge is only nonzero in a finite region of space. Specifically, we seek

2

Figure 1: Discretization. The outer boundary of the grid shown here corresponds to nh. The
regular mesh, with spacing h represents the uniform discretization of nh. The charge field is non
zero within the colored region shown, also called the support of the charge p. The support of plies
completely within nh.

the solution 4> to
fP 4> {)24> {)24>

fj,4> = {)x2 + {)y2 + ()z2 = p(x, y, z)

which has far-field behavior characterized by

where R is the total charge:

R = In p(il) dil,

and the region n contains the support of the charge p.

Iii ~ 00,

For many engineering calculations, methods which are accurate to O(h2) provide a good balance
between accuracy and work required. We seek a solution which is accurate to O(h2) over the
discretized computational domain nIL, where h is the uniform discretization, as illustrated in Figure
1. This computational domain corresponds to the index set of the discrete solution ¢IL, i.e. the
indices of the underlying discrete mesh.

Since our goal is to solve the problem on parallel processors, we partition nIL into a set of disjoint
sub domains n~:

nh = Un~.
k

Our method entails solving local problems on each of the n~ in parallel, as well as on a single
coarsened global mesh nR. The spacing of this coarsened mesh is H = Ch, where C is a specified
coarsening factor.

We choose the domain nIL to be a rectangular region, nIL = [~U], where f and u are the integer
vectors corresponding to the lower and upper comers of the region. The coarsened domain is then
defined as

where the operators L·J and r'l represent the floor and ceiling operators, respectively.

3

nh,G

nh,g

Oh

82 SI N 81 82
'" ~ '" ~ '" ,. ,. ... ,.

Figure 2: Domains used in James's algorithm, showing lengths in index space.

Because our meshes are node-centered, the points of OH map directly onto corresponding points
in Oh, and no averaging is required to coarsen the mesh data. Thus, we can coarsen the mesh by
sampling the mesh without having to interpolate. In particular, we coarsen a fine grid representation
using the sample operator SH: for each point Xc, we can find the coarse grid value "pH (xc) (where
"pH has grid spacing H) by finding the fine grid point x at the corresponding position in"ph (with
grid spacing h = Hie):

For the discussion that follows, we also need one more bit of notation. The grow operation
extends or shrinks an index domain by a uniform amount in each direction. If Oh = [~it] (where
f = (lx, lv, lz) and i1 = (ux, ny, uz)), we define grow as

h.... -. grow(O ,g) = [1 - (g, g, g), u + (g, g, g)].

When 9 < 0, grow returns a shrunken domain.

3 The Method

Our domain decomposition method is built upon a method for solving single-processor infinite
domain Poisson problems, as described previously in [6]. We will summarize the single-grid algo
rithm first, and then describe the domain decomposition algorithm.

3.1 A Serial Infinite-Domain Poisson Solver

Following the approach described in [12] and [13], we are able to calculate a solution to the Poisson
equation with infinite-domain boundary conditions in four steps, using two solution grids. Given a
charge on a grid Oh, the first solution grid, referred to here as the inner grid or Ok,g, is 81 points
larger in each dimension than Ok. The second grid, called the outer grid or Oh,G, is larger still,
expanded by 82 points from Oh,g in each dimension. The relationships among these three grids are
depicted in Figure 2. The four steps required to calcu1ate the solution are as follows.

1. Find the solution to the Poisson equation on the inner grid, Oh,g, using Dirichlet boundary
conditions.

4

• ••••••••••••••••••••••••• •
•• • ~p 1

• • • - .-T .,.. • .1

•
•

....

M Wi I-

~~ ~:- g
......

1Hm I I I
.1.11

I IT

• •
• •
• •
• •

.~p 1

•
I I I

• • • • • • • • • • • • • • ••••••••••••••••••••••••• •
Figure 3: In step 3, multipole moments are calculated for each patch on anh,g, such as the one
shaded in red. The multipole expansions are then evaluated at the coarse points of anh,G, plus
an additional layer of width P, indicated with blue circles for one face. These evaluations are
interpolated to the fine points of anh,G, located at intersections of the black lines, using two
passes. The evaluation points of the first pass are shown as green diamonds.

2. Calculate a charge, q, along the inner grid boundary equal to the normal derivative of initial
solution at the inner grid boundary.

3. Calculate boundary conditions at each point on the outer grid by numerically integrating the
effect of the charge at the inner grid boundary:

g(x) = (G(x - iiJq(Y)dAy.
laon.9

4. Find the solution to the Poisson equation on the outer grid, nh,G, using the boundary condi
tions, g, just calculated.

Our approach here is identical to the approach described previously in [6] except in the way the
integration is performed in step 3. Previously, we integrated the charge from the inner grid onto
a coarsened version of the outer grid, with mesh spacing H = h/O(Vii), and interpolated from
the coarse grid to find necessary values on anh,G. Om straightforward integration required O(N3)
work but significantly took more time to compute than the Dirichlet solutions on the inner and
outer grids.

In our current implementation, we perform the integration required for the boundary calculation
using the fast multipole method (FMM). Each face of nh,g is divided into patches of C x C points.
We then calculate the multipole moments of the charge up to order M on each patch. On each face
of nh,G, for points on a mesh coarsened by C in each dimension and expanded by a coarse layer of
points of width P, we add up the evaluations of multipole expansions due to all the faces of nh,9.

Finally, we interpolate polynomially, one dimension at a time from the coarse mesh values to the
remaining fine mesh points on the face. (See Figure 3.)

Choosing C = Vii provides sufficient accuracy for the solution and allows the integration step
to be completed in O((M2+ P)N2) work. The values of M and P are chosen with regard to accuracy

5

N
16
32 12 1.75
64 12 1.38
128 12 20 168 1.31
256 16 24 304 1.19
512 24 44 600 1.17

1024 32 48 1120 1.09
2048 48 80 2208 1.08

Table 1: Values of the coarsening factor, C, annulus thickness, 82, and resulting expanded grid size,
N G , for various input grid sizes N. The ratio of N G / N decreases for increasing N.

requirements and are independent from N, 80 for a given degree of accuracy, the integration step
requires O(N2) work.

We should also note the constraints required on 81 and 82, the spacing between the grids Oh,
Oh,g, and Oh,G. We have found that setting 81 0 has only small effects on the accuracy of our
solutions and doing 80 allows us to minimize the size of the solution grids. Convergence requirements
of the multipole method force us to choose 82 with more care, however. In order for the multipole
expansions from a patch to converge, the distance from a patch center on aoh,g to the points on
aoh,G, on which the expansion is evaluated, should be at least twice the radius of the patch. Here
we define the radius of a patch as the maximum distance from the patch center to any point on the
patch. Recall that we chose our patches to be C fine grid points square. Thus our patches have
a radius of Ch/V?, and the distance requirement becomes S2h ~ 2(Ch/V?). We also need the
number of cells along the length of Oh,G to be divisible by C. Combining these two requirements,
we arrive at the following formula for 82:

N
2

(1)

In order to demonstrate the effect of these requirements, we show in Table 1 the necessary
values of 82 for grid sizes, N, ranging from 16 to 2048 by powers of 2. Values of C are chosen to
be close to the square root of N but also multiple of four. Note that the ratio of N G (the length
of Oh,G) to N decreases as N increases. This implies that overhead will be smaller for solutions to
larger infinite-domain problems.

3.2 Domain Decomposition

The domain decomposition algorithm described here is a finite-difference analogue of Anderson's
method of local corrections [1]. Our algorithm consists of three computational steps interspersed
by two communication steps, as described previously in [6].

1. INITIAL LOCAL SOLUTION. We calculate a local infinite-domain solution on each local sub
domain, k, augmented with an overlap region:

A ..I.h,initial
~19'f'k p~ on grow(O~, 8 + Cb).

and construct a coarsened version of the solution, ¢f1initial, by sampling:

¢:,ini.tial = SH (4)Z·initia') on grow (nf!, siC + b).

6

Here 8 is a correction radius, C is the coarsening factor, and b is the width of a layer for
polynomial interpolation to be used in step 3. The ~19 operator represents the Laplacian
calculated with a 19-point stencil of nearest neighbor points. The error characteristics of the
19-point stencil are essential for maintaining O(h2) accuracy in the overall algorithm when
combining the effects of coarse and fine grid data later OD.

2. GLOBAL COARSE SOLUTION. We couple the individual local solutions by solving another
Poisson equation on a coarsened mesh covering the entire domain. We first construct coars
ened local charge fields:

{

1\ ,J"H initial (nH /C 1) ~ 19'f'k I on grow Uk ,8 - ,

o otherwise

and then sum up these charge fields to form a global coarse representation of the charge:

Then we solve
~19t/JH = RH on grow (nH , 8/C + b)

with infinite-domain boundary conditions.

3. FINAL LOCAL SOLUTION. We solve

~7t/J~ = p:onn~

with Dirichlet boundary conditions on an~:

t/J~(x) = L t/J~/(X) + I (<pH (x) - L ¢:',initUU{x»)
k/:!lE9roW(O~inuial,s) kJ:xE9roW(O~, ,8)

where I is the same interpolation operator used in the serial infinite-domain Poisson solver.
Figure 4 depicts the regions from which data are taken to set boundary conditions on a face.

Note that the algorithm does not require fine grid data at all points in grow(n~,8+rb). Specifi
cally, the algorithm does not need fine grid data outside of grow (nt:, s/r + b}. In order to complete
steps 2 and 3, we only need the following data from step 1:

• the solution at coarse grid values, ¢:,initial, on grow (nf!, 8/C + b), necessary for step 2, and

• the solution at fine grid values, <pZ·initial, on the faces of grow (n~ , 8).

To ensure accuracy of the method, we need 8 = 2C.
As before, communication is only required in two phases: first, in constructing the global coarse

charge field, and second, to set the boundary conditions for the final local solution.

7

: , ..
I

I
: I
• I
: I

.. -----------

Figure 4: An illustration of setting boundary values for a final local solve in step 3 of MLC. For the
face shown in red in the upper figure, in a layout in which there are eight cubes, the lower figures
show the regions from which data are copied from faces of different neighboring boxes. Solid green
lines indicate the boundaries of the boxes n~,. The dashed lines indicate the boundaries of the
boxes grow (n~/ oS), and the dotted lines indicate the boundaries of the boxes grow (n~/ s + Cb).
Finer-grid data are copied to the red face from the nodes inside and on the edges of the regions
shaded dark blue. Coarser-grid data are copied from nodes inside and on the edges of the regions
shaded both dark and light blue, and then interpolated to nodes on the red face that are inside
and on the edges of the regions shaded dark blue.

8

4 Performance Model

As mentioned previously, the principle behind Chombo-MLC is to trade off communication against
compu tation. We next discuss these trade offs and show that they are reasonable. We describe a
performance model, and use it to show that in theory the overheads are reasonable. In the following
two sections we reconcile our predictions with practice.

In determining the computational overhead in Chombo-MLC, we will use the serial infinite
domain Poisson solver as a baseline. We will first show that the cost of our initial fine grid
solutions is similar to the cost of a serial solution. The computational overhead in Chombo-MLC
can be described as the sum of three costs: the extra computation required to calculate solutions
on expanded local grids, the cost of the coarse grid solution, and the time required for the final
local solutions on fine grid data. We will discuss each of these costs, and show that with the proper
choice of a coarsening factor, Chombo-MLC should be able to scale to thousands of processors.

4.1 Serial Infinite-Domain Poisson Solver

Chombo-MLC reuses many of the same components as the serial infinite-domain Poisson solver.
We will examine the computational costs involved in the serial solver first and compare this cost
with the cost of the initial solutions in Chombo-MLC.

For simplicity, let us consider only cubical domains with edge length N. The operation counts
for each step of the algorithm described in Section 3.1 are as follows.

1. Finding the solution to the Poisson equation on the inner grid using a fast (FFT) Poisson
solver: O(N3 }ogN).

2. Calculate a charge, q, along the inner grid boundary: O(N2).

3. Calculate boundary conditions at each point on the outer grid using FMM: O(N2)

4. Find the solution to the Poisson equation on the outer grid using a fast (FFT) Poisson solver:
O(N3 10g N).

Thus the serial infinite-domain solver operation count is bounded by the Dirichlet Poisson solve,
and the overall computational cost of an infinite-domain solution is O(N3 log N).

4.2 Practical Work Estimates

Since the computation required by the Poisson solvers used in our algorithm is nearly proportional
to the number of points for which a solution is being found (ignoring the weaker log N term in the
previous work estimates), we propose the following work estimates on the basis of these grid sizes.
First, let us define W as an estimate of the work required for a Poisson solution with Dirichlet
boundary conditions on a mesh nh:

W = size(nh),

where the size operator returns the total number of points in the mesh nh. Similarly, let us refer
to Wk as the work required to compute a Dirichlet solution on a subdomain n~.

Recall that the infinite-domain boundary calculation requires the solution of a Dirichlet problem
on an enlarged domain, as defined by Equation 1 and shown by example in Table 1. After calculating
the extents of nh,g and nh,G according to these requirements, we can define a work estimate fon
an infinite-domain solution as

9

and also W;d as the corresponding estimate for the work required to compute a local initial fine
grid solution within our MLC method.

Finally as an estimate of the total work per processor required for our MLC method, let

W1Jllc W~rse + L (Wld + Wk)
k aBSigned to P

where W:a,..e an estimate of the work required to calculate the infinite-domain solution on the global
coarse mesh. Note that to allow for the possibility of overdecomposition, multiple sub domains k
may be assigned to a single processor P.

4.3 Minimizing the Cost of the Coarse Grid Solution

In comparing the computational cost of Chombo-MLC to a serial infinite-domain solver, the cost
of computing the solution on the global coarse grid is overhead. We want to determine what range
of problems can be solved with minimal computational overhead due to the coarse grid calculation.
Our goal is to keep the cost of the coarse grid solution small enough that this overhead can be
ignored.

As before, let N be the length of a side, thus N3 is the total number of points. Let q be
the number of subdomains on a side. Then rf is the total number of sub domains (the maximum
number of processors) and

is the length of a local fine su bdomain.
Let C be the coarsening factor, as defined previously, such that the size of coarse grid, Nc, is

N / C. Since the coarse grid solution is not parallelized, we want Nc < N f in order to minimize the
overhead due to the coarse grid. Thus we have

or

N N
-<
C q

q< C.

4.4 Limits of Parallelism for the Method

As in most numerical libraries, an important consideration is how to optimize parameter settings
that affect performance. The performance of Chombo-MLC is most affected by the choice of two
parameters: q and C. However, various factors constrain the choice of these parameters, as well as
the intrinsic parallelism, and these constraints limit performance.

When choosing the coarsening factor, C, we may affect both the size of the coarse grid solution
and the size of the initial local solutions. Recall that our MLC algorithm requires us to find the
initial local solutions on grids expanded by 2C in each direction. Thus increasing C may lead to
extra work for the initial local solutions. As we have just seen in section 4.3, however, C needs to
increase with q in order to keep the cost of the coarse solution in line with the local solutions.

Since the serial infinite-domain solver requires an annulus itself, there is a range of problems
for which our algorithm is most suitable. We would like the coarsening factor for our MLC solver
to be less than or equal to half the annulus size required by the infinite domain solver, i.e. 82/2.
The coarsening factor must also evenly divide the local grid size N J. The maximum number of
processors is then dependent on the choice of the ratio between q and C.

10

q/C NJ 82 P N3

1/2 64 12 2 4 1283

1/2 128 20 4 64 5123

1/2 256 24 4 64 10243

1/2 512 44 8 512 40963

1 64 12 4 64 2563

1 128 20 8 512 10243

1 256 24 8 512 20483

1 512 44 16 4096 81923

2 64 12 8 512 5123

2 128 20 16 4096 20483

2 256 24 16 4096 40963

2 512 44 32 32768 163843

Table 2: Limits of parallelism for our MLC method with q = C. The number of processors, P, is
taken to be the total number of subdomains, q3.

Table 2 shows the limits of parallelism in terms of the maximum number of processors and
maximum problem size for various local problem sizes, N J, and ratios of q and C. If we assume,
for instance that 1283 problems will easily fit in local memory, users willing to expend a factor of
two more computational effort can reach problem sizes of 10243 using 512 processors. Users willing
to expend a factor of eight more computational effort could reach a problem size of 20483 on 4096
processors.

4.5 Future Improvements

The current implementation is limited by the relationship between the coarsening factor, C, and
the number of sub domains per side, q. This restriction is due to computing the global coarse
grid solution in serial. By parallelizing the global coarse solution we can vary C and q indepen
dently and extract significantly more parallelism from our MLC method. We have built a parallel
implementation of the multipole calculation on the coarse grid infinite-domain solution and are con
sidering alternatives for efficiently parallelizing the Dirichlet solves on the coarse grid while keeping
communication requirements low. If our efforts are successful, Chombo-MLC could efficiently use
thousands of processors without incurring additional computational overhead on the local solutions.

5 Results

In this section we present computational results which demonstrate the low communication over
head of Chombo-MLC on up to 512 processors. We also compare our performance results with the
estimates presented earlier in Section 4

5.1 Hardware

We ran on NERSC's Seaborg IBM SP system, located at the National Energy Research Scientific
Computing Centerl Seaborg contains POWER3 SMP High Nodes interconnected with a "Colony"

1 http:} /www.nersc.gov/nusers/resources/SP.

11

Grind Time
25 I I I I I I

20 t- -

t- -

t- -

5 - -

o 16 32 64 128 256 512
processors

Figure 5: Grind time (processor-time per solution point) remains stable over a range of problem
sizes.

switch. Each node is an 16-way Symmetric Multiprocessor (SMP) based on 375 MHz Power-3
processors2, sharing between 16 and 64 Gigabytes of memory, and running AIX version 5.1.

Chombo-MLC is is written in a mixture of C++ and Fortran 77. We used the IBM C++ and
Fortran 77 compilers, mpCC and mp:r:lf. C++ code was compiled with the IBM mpCC compiler,
using options -02 -qarch=pwr3 -qtune=pvr3. Fortran 77 was compiled with mpxlf with -02
optimization. We used the standard environment variable settings, and we collected timings in
batch mode using loadleveler. The timings reported are based on wall-clock times, obtained with
MPI_WtimeO. Each calculation was performed 3 times. Variations among the runs was less than
10%. The times reported are for the runs with the shortest total times.

Due to a memory bug in the current version of our code, some simulations failed to run in the
memory available. In order to complete our simulations for this, draft of our manuscript, we ran
the 32 processor simulation on 4 nodes (using 8 processors per node rather than 16) and we ran
the 512 processor simulation on 128 nodes (using 4 processors per node rather than 16). We are
working on a fix to this bug and will have updated results in time for the camera-ready deadline.

5.2 Scalability

In order to measure performance, we scaled the work linearly with the number of processors.
Ideally grind time, the processor-time required per solution point, would remain constant. The
scaled speed-up tests shown in Figure 5 demonstrate that Chombo-MLC scales well up to 512
processors. The run parameters and timing results for the performance tests are shown in Table 3.

Communication overhead is relatively low in Chombo-MLC. As shown in Figure 6, communi
cation overhead is less than 25% on up to 512 processors.

As can be seen in Table 3, time spent on the coarse grid solutions is approximately one third
the time spent on fine grid solutions. Ideally, the time required for coarse grid solutions would be
negligible, but these results match our expectations since we chose values of C closer to q than 2q.

2http://www-l.ibm.comJservers/ eserver jpseries./hardware/whitepapersjnighthawk.html

12

Input Parameters Times for Each Stage (seconds) Total Grind
p q C N Local Red. Global Bnd. Final (sec) (psec)

16 4 3 3843 32.43 2.16 13.84 2.14 4.90 56.01 15.83
32 4 4 5123 30.87 1.40 13.61 1.85 5.82 53.91 12.85
64 4 5 6403 45.80 7.54 13.92 5.14 7.76 82.27 20.09
128 8 6 7683 38.23 8.25 14.21 11.39 4.94 77.50 21.90
256 8 8 10243 45.89 6.73 14.06 10.78 6.02 85.73 20.44
512 8 10 12803 32.82 1.98 13.59 2.51 7.44 58.64 14.32

Table 3: Input parameters and timing breakdowns for runs. The Local and Global solutions require
an infinite-domain solution, whereas the Final calculation solves a simpler Dirichlet problem. The
time for Reduction (Red.) includes everything necessary to accumulate the coarsened local solutions
into a single coarse grid for the Global solve. The time for Boundary (Bnd.) includes everything
required to assemble correct boundary conditions for the calculation of the Final solution. P is the
number of processors, q is the number of subdomains on a side, and C is the coarsening factor.
Grind is the computation time per point, the grind time. Times may not sum exactly due to
averaging.

Communication Overhead
I I I I I I

- -

- -

- -

- -

- -

16 32 64 128 256 512
processors

Figure 6: Communication overhead is small.

13

P Time (sec) Wk Grind Time (psec)
16 4.90 3.65 x 106 1.34
32 5.82 4.29 x 106 1.36
64 7.76 4.17 x 106 1.86
128 4.94 3.65 x 106 1.35
256 6.02 4.29 x 106 1.40
512 7.44 4.17 x 106 1.78

Table 4: Running times, points updated, and grind times for the final local solution phase of our
MLC method.

P Time (sec) Wk Grind Time (JLsec)
16 4.90 13.06 x 10° 2.48
32 5.82 13.95 x 106 2.21
64 7.76 13.30 x 106 3.44
128 4.94 13.06 x 106 2.93
256 6.02 13.95 x 106 3.29
512 7.44 13.30 x 1()6 2.47

Table 5: Running times, points updated, and grind times for the initial local solution phase of our
MLC method.

In comparing our timing results to our work estimates, we start from the simplest building
block and work up. In Table 4 we show the work estimates and running times for the final local
solution phase, a simple Dirichlet Poisson solve, for each simulation which we ran. The grind time
for these Dirichlet solutions ranges from 1.34 - 1.86 J..'sec and averages 1.52 p.aec over the range of
problem sizes. We believe the variation in performance is largely due to inefficiencies of the FFTW
solver on meshes sizes of non-powers of 2.

Due to our choice of parameters, the global infinite domain solutions were performed on identical
mesh sizes for all our problem sizes. Our work estimate for this stage of the computation, W~r8e is
7.07 X 106 mesh points. The running times for this phase of the computation were fairly consistent,
and as a result, the grind times for this phase of the computation vary only modestly, from 1.92
- 2.01 JLsec. Comparing these grind times with those for the Dirichlet solutions, we infer that the
fast multipole method for the infinite-domain boundary calculation adds approximately 30% to the
running time above what would be required for the two Dirichlet solutions. This is a significant
improvement over our previous Scallop solver where the infinite-domain boundary calculation,
performed by rather straightforward numerical integration, dominated the entire solution.

Grind times for the initial local solutions vary a good deal more than for the other phases,
as shown in Thble 5. The grind times calculated are also larger than those for the global infinite
domain calculation. In part, this may be due to the extra work required during the infinite
domain boundary calculation to calculate the extra coarse grid values which are required later for
interpolation.

We can also use the estimates of Section 4.2 to imagine the time required for an "ideal" infinite
domain solver. If we take the average of the grind times for the global infinite-domain solution
(Table 4), 1.96 p.sec, and apply that to the required number of point updates for the global fine
grid problem, we can estimate a lower bound on Illl1ning times for infinite-domain calculations of

14

N3 W!P Ideal Time (sec) Actual Time (sec) Ratio
3843 9.69 18.99 56.01 2.95
5123 11.00 21.56 53.91 2.50
6403 10.17 19.93 82.27 4.13
7683 8.68 17.01 77.50 4.56
10243 9.71 19.03 85.73 4.51
12803 9.52 18.66 58.64 3.14

Table 6: Running times, points updated, and grind times for the initial local solution phase of our
MLC method.

Code Input ParaDleters Times for Each Stage (seconds) Total Grind
Version P q C N Loc. Red. Glob. Bnd. Fin. (sec) (psec)

Scallop 16 4 3 3843 130.1 0.53 60.9 2.95 3.70 198.8 56.17
Scallop 128 8 6 7683 187.7 1.89 67.3 6.42 4.42 270.7 76.49

Chombo 16 4 3 3843 32.43 i 2.16 13.84 2.14 4.90 56.01 15.83
Chombo 128 8 6 7683 38.23 8.25 14.21 11.39 4.94 77.50 21.90

Table 7: Comparison of running times of current Chombo-MLC and previous Scallop version.

various sizes. These estimates are compared to our actual running times in Table 6. The slowdown
compared to an ideal solver ranges from roughly 2.5 to 4.6, trending only moderately higher with
increasing numbers of processors.

In summary, we were are able to scale a problem up from 16 to 512 processors with, at worst, a
factor of 1. 7 increase in the grind time. Running times for each phase of our solver correlate fairly
well with simple work estimates based on the number of points updated, with the global and local
infinite-domain solutions taking slightly longer than the final Dirichlet solutions due to the extra
work required for boundary condition calculations. Communication times are reasonably small for
an elliptic partial differtial equation solver, generally staying well under 25% of the total running
time.

5.3 Comparison to Previous Version

To our knowledge there are no other parallel finite-difference infinite-domain solvers with which we
can compare our results. Our current results do show marked performance improvement over our
previous Scallop implementation, however. The perfomance results from problem sizes for which
we have direct comparisons are shown side by side in Table 7. The fast multipole method greatly
reduces the cost of the infinite-domain boundary calculation in both the initial local solution and the
global coarse grid solution. Communication times have increased somewhat but are still reasonable
overall. The slightly greater communication times may indicate that further optimization is possible
within the Chombo communication routines.

6 Conclusions and Im.ture Work

We have presented a scalable 3D Poisson solver for free space problems that utilizes a method of
local corrections that, in practice, eliminates communication overheads. The method employs a

15

philosophy for embracing technological change that substitutes relatively inexpensive computation
for relatively expensive communication.

We described the design of the Chombo-MLC solver, which realizes our strategy. In practice,
the performance of Chombo-MLC matches the expectations of our performance model quite well.
Communication costs are less than one quarter of the total running time-generally significantly less
and total computation time is dominated by the time required for the initial fine grid calculations.
The benefit of little communication comes at the expense of added computation, but this overhead
is reasonable, and it remains almost constant, independent of the number of processors.

We are currently investigating ways to parallelize the global infinite-domain solution at the
center of Chombo-MLC algorithm. Even modest parallelism in this phase of the computation would
enable significantly increased parallelism overall allowing us to make use of thousands of processors.
At the same time, parallelizing the global infinite-domain calculation would lift restrictions imposed
on the initial local solutions, reducing further the computational overhead incurred by the method.

7 Acknowledgments

Peter McCorquodale and Phillip Colella are supported by the Mathematical, Information, and
Computational Sciences Division of the Office of Science, U.S. Department of Energy under con
tract number DE-AC03-76SF00098. Greg Balls and Scott Baden were supported by the National
Partnership for Advanced Computational Infrastructure (NPACI) under NSF contract ACI9619020.
This research used resources of the National Energy Research Scientific Computing Center, which
is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE
AC03-76SFOOO98. Chombo-MLC is publicly available at http://vwv-cse . uesd. edu/groups/
hpcl/scg/scallop/.

References

[1] C. R. Anderson. A method of local corrections for computing the velocity field due to a
distribution of vortex blobs. Journal oj Computational Physics, 62:111-123, 1986.

[2] S. B. Baden and S. J. Fink. Communication overlap in multi-tier parallel algorithms. In Proc.
oj SC '98, Orlando, Florida, November 1998.

[3] S. B. Baden and S. J. Fink. A programming methodology for dual-tier multicomputers. IEEE
Trans. Software Engineering, 26(3):212-26, March 2000.

[4] S. B. Baden and D. Shalit. Performance tradeoffs in multi-tier formulation of a finite difference
method. In Proc. 2001 International Conference on Computational Science, San Francisco,
CA, May 2001.

[5] G. T. Balls. A Finite Difference Domain Decomposition Method Using Local Corrections Jor
the Solution oj Poisson's Equation. PhD thesis, University of California, Berkeley, 1999.

[6] G. T. Balls, S. B. Baden, and P. Colella. Scallop: A highly scalable parallel poisson solver in
three dimensions. In Proc. SC '03, Phoenix, AZ, November 2003.

[7] G. T. Balls and P. Colella. A finite difference domain decomposition method using local
corrections for the solution of Poisson's equation. Journal of Computational Physics, 180(1):25-
53, July 2002.

16

[8] R. Bank and M. Holst. A new paradigm for parallel adaptive meshing algorithms. SIAM
Journal on Scientific Computing, 22(4}:1411-1443, 2000.

[9] S. J. Fink, S. R. Kohn, and S. B. Baden. Efficient run-time support for irregular block
structured applications. Journal oj Parallel and Distributed Computing, 50(1-2):61-82, April
May 1998.

[10] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. The Journal 0/
Computational Physics, 73:325-348, 1987.

[11J M. Holst. Applications of domain decomposition and partition of unity methods in physics
and geometry. In I. Herrera, D. E. Keyes, O. B. Widlund, and R. Yates, editors, Proceedings
0/ the Fourteenth International ConJerence on Domain Decomposition Methods, January 2002.

[12] R. A. James. The solution of Poisson's equation for isolated source distributions. Journal of
Computational Physics, 25(2):71-93, October 1977.

[13] K. Lackner. Computation of ideal MHD equilibria. Computer Physics Communications,
12(1):33-44, 1976.

[14] B. F. Smith and O. B. Widlund. A domain decomposition algorithm using a heirarchical basis.
SIAM Journal on Scientific and Statistical Computing, 11(6):1212-1220, November 1990.

[15] A. Sohn and R. Biswas. Communication studies of DMP and SMP machines. Technical Report
NAS-97-004, NAS, 1997.

[16] A. K. Somani and A. M. Sansano. Minimizing overhead in parallel algorithms through over
lapping communication/computation. Technical Report 97-8, leASE, February 1997.

17

