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Abstract

We present an extension of a previously presented method to compute locally adap-
tive solutions for incompressible viscous flows in three dimensions using block-
structured local refinement in both space and time. Like the previous work, this
method uses a projection formulation based on a cell-centered approximate projec-
tion, and performs a set of synchronization operations to maintain solution accuracy
in the presence of refinement in time. We use an L0-stable second-order semi-implicit
scheme to evaluate the viscous terms.
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1 Introduction

Adaptive mesh refinement is a powerful tool for computing solutions to prob-
lems which are otherwise inaccessible due to limits in computational resources.
In a previous work [19], we presented a projection method for two-dimensional
inviscid incompressible flow on adaptive locally refined meshes. The algorithm
in [19] employs refinement in time as well as space (subcycling), and is second-
order accurate in time and space. The cell-centered projection discretization
is based on composite and single-level operators. Also, an advection-velocity
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correction was computed based on a passively advected scalar to ensure that
the algorithm was approximately freestream-preserving.

In this work, the algorithm presented in [19] is extended to three-dimensional
viscous flow. There have been many approaches to computing adaptive solu-
tions for this problem which have not employed sybcycling in time [21,28,22,9],
instead opting to advance all levels with a uniform timestep. Extension of
the non-subcycled schemes to multiphase flows was done in [27], and to the
immersed-boundary method in [24,15]. Almgren et al [1] presented an algo-
rithm for the solution of the three-dimensional incompressible Navier-Stokes
equations which also subcycles in time. As detailed in [1], subcycling results in
better accuracy and AMR performance, at the expense of greater algorithmic
complexity.

The work presented here represents a different set of algorithmic design choices
from those employed in [1], many of which have been chosen to simplify the
eventual extension of this work to Cartesian-mesh embedded-boundary geome-
tries like those in [11]. Another feature in our algorithmic choices has been the
choice to use fully multilevel (rather than single-level) elliptic solvers wherever
possible. Features of the algorithm presented here include:

• Projection discretization. This work employs the cell-centered approx-
imate projection discretization developed in [19] as opposed to the node-
centered discretization employed in [1]. While developing and maintaining
two sets of elliptic solvers for the regular Cartesian grid case requires a
fairly large development effort, doing this for embedded-boundary computa-
tions would represent an overwhelming amount of effort. Since cell-centered
solvers are already required for other parts of the algorithm, the cell-centered
projection discretization enables the use of a single set of elliptic solvers and
will substantially lessen the work required to extend this algorithm to em-
bedded boundary computations.

• Treatment of viscous terms. Previous semi-implicit methods have used
the Crank-Nicolson scheme to compute the viscous terms in the update.
However, for the discretizations used in this work, we found the neutrally-
stable Crank-Nicolson scheme suffered from weak instabilities at coarse-
fine interfaces, similar to the behavior noticed at embedded boundaries
in [16,20]. Instead, we employ a second-order semi-implicit Runge-Kutta
scheme based on the L0-stable scheme in [29], which eliminated such insta-
bilities.

• Approach to Synchronization. Synchronizing the computed solution be-
tween AMR levels for an adaptive projection method requires additional
elliptic solves to ensure that the divergence constraint is satisfied. Also, a
flux-correction step is performed to ensure conservation at coarse-fine in-
terfaces. For stability, this correction is computed in an implicit manner,
requiring an additional elliptic solve during the synchronization step, as in
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[13]. Extending the ideas in [19], our approach has been to perform these
as multilevel elliptic solves over all of the appropriate refinement levels. In
contrast, the work in [1] performs synchronizations one pair of levels at a
time using single-level elliptic solves, interpolating corrections to finer levels.

• Freestream preservation for advective transport.We use the volume
discrepancy approach described in [19] to ensure that freestream preser-
vation is approximately enforced. In contrast, freestream preservation is
maintained exactly in [1] by computing a correction to the advection ve-
locity field, performing a correction advection step, and then interpolating
the corrections to finer levels. The advantages of the approach used in this
work are that it produces a conceptually simpler algorithm and avoids in-
terpolation of corrections to finer levels (corrections are naturally computed
for all levels through the multilevel solves). Disadvantages to our approach
are the need for multilevel elliptic solvers and that our approach tolerates
small deviations from freestream preservation, which are generally confined
to cells adjacent to coarse-fine interfaces. [19].

1.1 Formulation of the Problem

We are solving the incompressible constant-density Navier-Stokes equations
with a passively-advected scalar s:

∂~u

∂t
+ (~u · ∇)~u = −∇p+ ν∆~u (1)

(∇ · ~u) = 0 (2)

~u = 0 on ∂Ω (3)

∂s

∂t
+∇ · (~us) = 0, (4)

where ~u is the fluid velocity, p is the pressure, and ν is the kinematic viscosity.

As in [19], we transform the constrained problem (1-2) into an initial value
problem using the Hodge projection. The Hodge projection operator P applied
to a vector field ~w extracts the divergence-free component

P(~w) = ~wd (5)

and is computed by solving an elliptic equation for φ and then subtracting
∇φ:

P(~w) = (~I −∇(∆−1)∇·)~w. (6)

Using the projection operator, we transform the constrained problem (1-2)
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into an evolution equation:

∂~u

∂t
= P(−(~u · ∇)~u+ ν∆~u) (7)

∇ · ~u(·, t = 0) = 0. (8)

1.1.1 Viscous term discretization

The heat equation with a source term may be written as:

∂q

∂t
= L(q) + f (9)

where L is a discrete second-order elliptic operator. Following [29], we dis-
cretize (9) as

qn+1 = (I − µ1L)
−1(I − µ2L)

−1
[
(i+ µ3L)q

n + (I + µ4)f
n+

1
2

]
, (10)

where fn+
1
2 = f

(
(n + 1

2
)∆t

)
, qn = q(n∆t), and the coefficients µ1, µ2, µ3, µ4

are the values suggested in [29]:

µ1 =
2a− 1

a+ discr
∆t,

µ2 =
2a− 1

a− discr
∆t,

µ3 = (1− a)∆t,

µ4 = (
1
2
− a)∆t

a = 2−
√
2− ε,

discr =
√
a2 − 4a+ 2,

where ε is a small quantity (we use 10−8). The treatment of the source term
presented here differs from that in [29] due to the different time-centerings
of the source term; the source terms in [29] are centered at the old and new

times, while the source term fn+
1
2 in this work is centered at the half-time.

We use this to define the diffusive term LTGA(qn, fn+
1
2 ) as follows:

LTGA(qn, fn+
1
2 ) =

qn+1 − qn

∆t
− fn+

1
2 (11)

≈ (Lq)
(
(n+ 1

2
)∆t

)
+O(∆t2)

Note that LTGA may be written in conservative form:

LTGA(qn, fn+
1
2 ) = Div( ~F TGA) (12)
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1.1.2 Time discretization

As in [19], our algorithm is a predictor-corrector formulation in which we first
compute an intermediate velocity field and then project it onto the space of
vectors which satisfy the divergence constraint. Updates to the scalar s are
computed using a conservative update. The intermediate velocity field ~u∗ is
computed as an approximation to ~u(t+∆t):

~u∗ = ~u(t)−∆t
[
(~u · ∇)~u

]H
+∆tνLTGA(~u(t), fSRC)−∆t∇p(t− ∆t

2
), (13)

where the superscript H indicates centering at the half time (t + ∆t
2
). The

notation νLTGA(~u(t), fRHS) indicates that the viscous terms are computed

using the semi-implicit method detailed in section 1.1.1, where f SRC = −
[
(~u ·

∇)~u
]H−∇p(t−∆t

2
). The updated velocity field is then computed by projecting

the intermediate velocity field onto the space of divergence-free vectors:

~u(t+∆t) = P(~u∗ +∆t∇p(t− ∆t
2
)) (14)

∇p(t+ ∆t
2
) =

1

∆t
(I− P)

(
~u∗ +∆t∇p(t− ∆t

2
)
)

(15)

Note that we project an approximation to ~u+∇p rather than ~u. We have found
this formulation to be better behaved in the presence of local refinement; work
by Almgren, Bell, and Crutchfield [2] supports this choice of formulations.
Also, while in our approach the pressure is only first-order accurate in time,
it can be made more accurate using the ideas in [8].

1.2 AMR Notation

In this work, we use the same notation as in [19]. Following [7], our adap-
tive mesh calculations are performed on a hierarchy of nested, cell-centered
grids (Figure 1). At each AMR level ` = 0, ..., `max, the problem domain is dis-
cretized by a uniform grid Γ` with grid spacing h`. Level 0 is the coarsest level,
while each level `+ 1 is a factor n`ref =

h`
h`+1

finer than level `; the refinement

ratio n`ref is an integer. Because refined grids overlay coarser ones, cells on
different levels will represent the same geometric region in space. We identify
cells at different levels which occupy the same geometric regions by means of
the coarsening operator Cr(i, j) = (b irc, b

j

r
c). In that case, {Cr}−1{(i, j)} is the

set of all cells in a grid r times finer that represent the same geometric region
(in a finite volume sense) as the cell (i, j).

In the present work, we assume that the problem domain is a rectangle, and
that the refinement ratios are powers of two. Calculations are performed on
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Fig. 1. Block-structured local refinement. Note that refinement is by an integer
factor and is organized into rectangular patches.

a hierarchy of meshes Ω` ⊂ Γ`, with Ω` ⊃ Cn`
ref
(Ω`+1). Ω` is the union of

rectangular patches (grids) with spacing h`; the block-structured nature of
refinement is used in the implementation to simplify computations on the
hierarchy of meshes. On the coarsest level, Ω0 = Γ0. A cell on a level is either
completely covered by cells at the next finer level, or it is not refined at all.
Since we assume the solution on finer grids is more accurate, we distinguish
between valid and invalid regions on each level. The valid region on a level is
not covered by finer grid cells: Ω`valid = Ω

` − Cn`
ref
(Ω`+1). The grids on each

level satisfy a proper nesting condition [7]: no cell at level ` + 1 represents a
geometric region adjacent to one represented by a valid cell at level `− 1.

Likewise, Ω`,∗ denotes the cell faces of level ` cells, while Ω`,∗valid refers to the
cell faces on level ` not covered by level ` + 1 faces. Note that the coarse-
fine interface ∂Ω`+1,∗ between levels ` and ` + 1 is considered to be valid on
level `+ 1, but not on level `. The coarsening operator also extends to faces:
Cn`

ref
(Ω`+1,∗) is the set of level ` faces overlain by level `+ 1 faces.

A composite variable is defined on the union of valid regions of all levels.
Since we organize computation on a level-by-level basis, the invalid regions of
each level also contain data, usually an approximation to the valid solution.
A level variable is defined on the entire level Ω` (not just the valid region).
For a cell-centered variable φ, the level variable φ` is defined on all of Ω`; the
composite variable φcomp is defined on the union of valid regions over all levels.
We also define composite and level-based vector fields , which are defined at
normal cell faces. Like other face-centered variables, a composite vector field
~uface,comp is valid on all faces not overlain by finer faces (Fig 2). Likewise, we
define composite and level operators which operate on composite and level
variables, respectively.
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Fig. 2. Sample coarse-fine interface with a face-centered vector field. Cell (i,j) (open
circle) is to the right of the coarse-fine interface.

It is also necessary to transfer information from finer grids to coarser ones.
We define 〈φ`+1〉 as the appropriate cell-centered or face-centered arithmetic
average of level `+1 data φ`+1 to the underlying coarser cells or faces in level
`.

Divergence, Flux Registers, and Reflux-Divergence

The operator discretizations employed in this work are identical to those em-
ployed in [19]; a short description of the operators is included here for conve-
nience.

The basic multilevel divergence Dcomp is a cell-centered divergence of a face-
centered vector field. The level-operator divergence D` of a level variable
~uface,` is defined by ignoring any finer levels and computing D` everywhere
in Ω` as if there were no finer level. Since the composite divergence on level
` depends on both level ` and level ` + 1 data [19], it may be written as
Dcomp,`(~uface,`, ~uface,`+1); the level operator only depends on level ` data:D`(~uface,`).

Assume that the vector field ~uface,` can be extended to all faces in Ω`,∗, in-
cluding those covered by the coarse-fine interface face ∂Ω`+1,∗. The composite
divergence Dcomp~uface,comp on Ω` may then be expressed as the level-operator
divergence D` along with a correction for the effects of the finer level (`+ 1).
To do this efficiently, we define a flux register δ~u`+1 defined on Cn`

ref
(∂Ω`+1,∗),

which stores the difference in the face-centered quantity ~uface on the coarse-
fine interface between levels ` and ` + 1. Notationally, δ~u`+1 belongs to the
fine level (`+1) because it represents information on ∂Ω`+1,∗. However, it has
coarse-level (`) grid spacing and indexing.

We define the reflux divergence D`
R to be the D

` stencil as applied to the
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face-centered vectors on the coarse-fine interface with level `+ 1; the general
composite operator can then be expressed as:

(Dcomp,`~uface)i = (D
`~uface,`)i +D`

R(δ~u
`+1)i, (16)

δ~u`+1 = 〈~uface,`+1〉 − ~uface,` on Cn`
ref
(∂Ω`+1,∗).

For the level ` cell (i), D`
R can be defined as:

D`
R(δ~u

`+1)i =
1

h`

∑

p

±(δ~u`)p, (17)

where the sum is over the set of all faces of cell (i) which are also coarse-fine
interfaces with level ` + 1, and the ± is + if the face p is on the high side of
cell (i), and - if p is on the low side. Note that D`

R only affects the set of level
` cells immediately adjacent to the coarse-fine interface with level `+ 1.

Gradient and Coarse-Fine Interpolation

The gradient is a face-centered, centered-difference gradient of a cell-centered
variable φ. Gcompφ is a composite vector field, defined on all valid faces in the
multilevel domain. To compute Gcompφ at a coarse-fine interface, we interpo-
late values for φ using both coarse- and fine-level values. The details of this
interpolation process are discussed in appendix A. We denote this quadratic
coarse-fine interpolation operator as I(φ`, φ`−1):

φ` = I(φ`, φ`−1) on ∂Ω` (18)

means that ghost cell values for φ on level ` along the coarse-fine interface
with level `− 1 are computed using this interpolation.

The level-operator gradient G` is defined by extending Gcomp (which is only
defined on Ω`,∗valid) to all faces in Ω

`,∗ as if no finer level existed. At interfaces
with a coarser level ` − 1, the interpolation operator I(φ`, φ`−1) is used to
compute ghost cell values.

The composite gradient on level `, Gcomp,`, is dependent on level ` and coarse-
level (` − 1) data: Gcomp,`(φ`, φ`−1). Likewise, the level-operator gradient can
be written G`(φ`, φ`−1).

Laplacian

The Laplacian is defined as the divergence of the gradient:

Lcompφcomp = DcompGcompφcomp (19)
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L`φ` = D`G`φ`. (20)

On the interiors of grids, (19) and (20) reduce to the usual seven-point (five-
point in 2D) second-order discrete Laplacian. The dependencies of the Lapla-
cian operators may again be expressed explicitly: Lcomp,`(φ`, φ`+1, φ`−1) and
L`(φ`, φ`−1).

Cell-centered Operators

Cell-centered versions of the gradient and divergence operators are defined in
the same way as in [19] using the operators defined above along with cell-to-
face and face-to-cell averaging AvC→F and AvF→C . For example, the compos-
ite cell-centered divergence operator is defined as the composite divergence
applied to a cell-centered vector field which has been averaged from cells to
faces:

DCC,comp~uCC = Dcomp(AvC→F~uCC). (21)

Similarly, the cell-centered gradient is defined by averaging the face-centered
gradient to cell centers:

GCC,compφ = AvF→CGcompφ. (22)

The level-operator divergence and gradient operators are defined similarly.

2 Multilevel update algorithm

In this section, we present the recursive algorithm used to update the solution
on a single level ` from time t` to time t`+∆t`. Implied in this advance is the
update of all levels finer than ` and synchronization with them.

As in [7,19], we organize our update around single-level updates and then
a synchronization step to ensure proper matching between the solutions at
different refinement levels. This can be described as a recursive advance for a
single AMR level ` which advances the solution at levels ` and finer from time
t` to t` + ∆t`. First, the solution on level ` is advanced using a single-level
update from time t` to t` + ∆t`. This update is generally performed using
single-level operators without regard for the solution at finer levels. Once the
single-level update has been completed, the next finer level `+ 1 is advanced
n`ref times with a timestep ∆t

`+1 = ∆t`

n`
ref

. Once level ` + 1 (and any levels

finer than ` + 1) has been advanced to the time t` + ∆t`, a synchronization
step is performed to ensure proper matching between the solutions at different
refinement levels.
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2.1 Variables

We start the level ` advance with the solution at time t`, which includes the ve-
locity field ~u`(~x, t`) = (u`, v`, w`)T , an advected scalar s`(~x, t`), the freestream
preservation scalar Λ`(~x, t`), and the staggered-grid freestream preservation
correction ~up from the most recent synchronization step, which has been ex-
tended to the invalid regions on level ` with 〈~u`+1p 〉. We also have the lagged
approximation to the pressure πn−

1
2 .

We also need flux registers to contain coarse-fine matching information. δ ~V `

contains the normal and tangential (to the coarse-fine interface) momentum
fluxes across the coarse-fine interface between level ` and the coarser level
`− 1, while δs` and δΛ` contain the fluxes of the advected scalars s and Λ.

2.2 Single-level update

The complete recursive algorithm used to advance the level ` solution from
time t` to t` +∆t` is presented in pseudocode form in Figure 3.

(1) Compute advection velocities We compute a set of upwinded face-
centered velocities ~uhalfG at time t` + 1

2
∆t`, using the unsplit scheme out-

lined in Appendix B. Note that the source term used in the upwind
scheme is S = ∆t`(−Gπ` + νL`~u`(t`)).
These velocities are then projected using the face-centered projection

to compute a set of divergence-free face-centered velocities at the inter-
mediate time t`+ ∆t`

2
. First, we perform an elliptic solve for a correction:

L`φ = D`~u
half
G . (23)

If ` > 0, coarse-fine boundary conditions for the solve are quadratic
interpolation with the level pressure π:

φ` = I(φ`,
∆t

2
π`−1). (24)

Domain boundary conditions are the standard projection boundary con-
ditions (∂φ

∂n
= 0 at solid wall boundaries) [14]. Then the face-centered

velocity field is corrected:

~uhalf,` = ~u
half
G −G`φ`. (25)

Coarse-fine boundary conditions for computing G`φ` are given by (24).
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NSLevelAdvance(`, t`,∆t`)

Compute advection velocities ~u`AD

Compute advective updates:
s`

i
(t` +∆t`) = s`

i
(t`)−∆t`D`(Fs,`)i

Λ`
i
(t` +∆t`) = Λ`

i
(t`)−∆t`D`(FΛ,`)i

Predict ~uhalf

Compute ~u∗,`
i
= ~u`

i
(t`)−∆t[(~u · ∇)~u]n+

1
2

i
−∆tGCC,`π` −∆t[ν∆~u]TGA

Update advective and velocity flux registers:
if (` < `max) then

δs`+1 = −Fs,` · n`+1CF on C
n
`
ref
(∂Ω`+1,∗)

δΛ`+1 = −FΛ,` · n`+1CF on C
n
`
ref
(∂Ω`+1,∗)

δV`+1 = −(~uAD,` · n`+1CF )~u
half,` − (F TGA)` on C

n
`
ref
(∂Ω`+1,∗)

end if
if (` > 0) then

δs` = δs` + 1

n`−1
ref

〈Fs,` · n`CF〉 on C
n
`−1
ref
(∂Ω`,∗)

δΛ` = δΛ` + 1

n`−1
ref

〈FΛ,` · n`CF〉 on C
n
`−1
ref
(∂Ω`,∗)

δV` = δV` + 1

n`−1
ref

〈(~uAD,` · n`CF)~uhalf,`〉 + 1

n`−1
ref

〈
(F TGA)`

〉
on C

n
`−1
ref
(∂Ω`,∗)

end if

Project ~u∗,` → ~u`(t` +∆t`) :
Remove old ∇π: ~u∗,` := ~u∗,` +∆tGCC,`π`

Solve L`π` = 1
∆t`

DCC,`~u∗,`

~u`(t` +∆t`) = ~u∗,` −∆t`GCC,`π`

if (` < `max)
∆t`+1 = 1

n`
ref

∆t`

for n = 0, n`ref − 1
NSLevelAdvance(`+ 1, t` + n∆t`+1,∆t`+1)

end for

if ((t` +∆t`) < (t`−1 +∆t`−1)) Synchronize(`, t` +∆t`, t`)
end if

end NSLevelAdvance

Fig. 3. Recursive level time step for the incompressible Navier-Stokes equations.
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To correct for freestream preservation errors, the freestream preserva-
tion correction ~up is added to create a set of advection velocities:

~u`AD = ~uhalf,` + ~u`p (26)

(2) Update scalars The scalar update is essentially unchanged from [19];
upwinded face-centered values at the half time shalf are predicted for the
scalars using the scheme outlined in the appendix, which are then used
with the advection velocities to compute a conservative scalar update. As
in [19], the update equation used is

[s,Λ]`(t` +∆t`) = [s,Λ]` −∆t`D`(~u`AD[s,Λ]
half,`). (27)

(3) Predict transverse ~uhalf and [(~u · ∇)~u]half,` Using the advection ve-
locities ~u`AD, the transverse components of the staggered-grid ~uhalf are
computed (the normal components of ~uhalf were computed in step (1) )
using the tracing scheme in Appendix B and are corrected using the pro-
jection correction computed in (1), as in [19]. At this point, the nonlinear
advection term may be computed as follows:

[(~u · ∇)~u]half,` = AvF→C(~u`AD) · (G`~uhalf,`). (28)

(4) Compute ~u∗ (evaluate viscous terms) The viscous terms are evalu-
ated semi-implicitly and the intermediate velocity ~u∗,` is computed using
the discretization described in Section 1.1.1. The update proceeds as fol-
lows:
(a) Compute diffused source term

~f ∗ = −[(~u · ∇)~u]
1
2
,` −GCC,`π` (29)

~f = ∆t`(I + µ`4νL
`)~f ∗, (30)

where coarse-fine boundary conditions for the computation of ~f ` are
given by higher-order extrapolation of ~f ∗ normal to the coarse-fine
interface. Physical boundary conditions for the computation of ~f ` are
the same as the viscous boundary conditions on velocity (homoge-
neous Dirichlet for solid walls).

(b) Intermediate solve
Then, an intermediate solve is performed for ~u`e:

(I − µ`2νL
`)~u`e = ~u` + µ`3νL

`~u`(t`) + ~f (31)

Coarse-fine boundary conditions for ~u`e are quadratic interpolation
with the coarse-level velocity linearly interpolated in time:

~u`e = I(~u`e, ~u
`−1(t` + (∆t` − µ`1)) (32)
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(c) Solve for ~u∗

A second solve is then computed for the intermediate velocity ~u∗:

(I − µ`1νL
`)~u∗,` = ~u`e, (33)

with coarse-fine boundary conditions (if required):

~u∗,` = I(~u∗,`, ~u`−1(t` +∆t`)). (34)

(5) Initialize/update momentum and advective flux registers Once
the updates have been completed, the flux registers may be updated to
contain the mismatches between the coarse- and fine-level fluxes along
coarse-fine interfaces: For convenience, define the viscous flux F TGA:

F TGA,` = (1
2
− a)ν∆t`G`(f ∗,`)− νG`(r1~u

∗,` + r2~u
`
e + (1− a)~u`(t`)) (35)

• if (` < `max)

δ~V `+1 :=−~u`AD~uhalf,` + F TGA,`

δs`+1 :=−~u`ADshalf,`
δΛ`+1 :=−~u`ADΛhalf,`

• if (` > 0)

δ~V ` := δ~V ` +
1

n`−1ref

〈
~u`AD~u

half,`

〉
− 1

n`−1ref

〈
F TGA,`

〉

δs` := δs` − 1

n`−1ref

〈~u`ADshalf,`〉

δΛ` := δΛ` − 1

n`−1ref

〈~u`ADΛhalf,`〉

(6) Project ~u∗,` → ~u`(t`+∆t`) In the same way as in [19], the cell-centered
level-operator projection P

CC,` is applied to the intermediate velocity field
~u∗,`. First, solve for the approximation to the pressure π`(t` + 1

2
∆t`):

L`π`(t` +
∆t`

2
) =

1

∆t
DCC,`(~u∗,` +∆t`GCC,`π`(t` − ∆t

`

2
) (36)

if ` > 0, then coarse-fine boundary conditions are required both for
DCC,` and LCC,`. The coarse-fine boundary condition used to compute
the source term for the projection is quadratic interpolation:

~u∗,` = I(~u∗,`, ~u`−1 +∆t`G`−1π`−1). (37)

Note that this coarse-fine boundary condition differs from that used for
the single-level projection in [19] (which was an extrapolation of ~u∗,` at the
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coarse-fine interface). It was found that using this quadratic interpolation
boundary condition provided better matching at the coarse-fine interface
for viscous flows, which in turn results in a smaller correction when the
multilevel projection is applied during the synchronization phase. The
coarse-fine boundary condition used for π` in the elliptic solve is:

π` = I(π`, π`−1). (38)

Then, the velocity field is corrected:

~u`(t`+∆t`) = (~u∗,`+∆t`GCC,`π`(t`−∆t
`

2
))−∆t`GCC,`π`(t`+

∆t`

2
) (39)

(7) Recursive update of finer levels
If a finer level `+1 exists, it is then updated n`ref times with a timestep of
∆t`+1 = 1

n`
ref

∆t`. This brings all levels finer than level ` to time t` +∆t`.

(8) Synchronize with Finer Levels
If a finer level `+1 exists, we now synchronize level ` with all finer levels,
as described in the next section.

2.3 Synchronization

Synchronization is an essentially multilevel operation which ties together the
different AMR levels after they have been advanced fairly independently of
each other. For this reason, synchronization operations are applied to all levels
which have reached the synchronization time tsync simultaneously. We denote
the coarsest level which has reached tsync as `base. For example, in a compu-
tation with a finest refinement level of 3, the first synchronization operations
will be performed when levels 2 and 3 reach the same time. Then, as the
nested advance proceeds, eventually levels 1, 2, and 3 will reach the same
time tsync; at that point, the synchronization will be performed over all levels
` ≥ `base, where `base is 1. A pseudocode representation of the synchronization
operations is presented in Figure 4.

(1) Reflux for conservation To preserve conservation, the flux mismatch

stored in the flux registers δ~V , δΛ, and δS is used to correct the solution
along the coarse side of coarse-fine interfaces. For non-diffusive scalars (Λ
and s), we apply the correction explicitly, as in [19]:

[s,Λ]` = [s,Λ]` −∆t`D`
R([δS, δΛ]

`+1) for ` ≥ `base. (40)

Since the momentum flux correction will contain diffusive fluxes, sta-
bility considerations require that we apply this correction implicitly. We
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Synchronize(`base, t
sync,∆tsync)

Reflux for conservation:
for ` = `max − 1, `base,−1

s`(tsync) := s`(tsync)−∆t`D`
R(δs

`+1)
Λ`(tsync) := Λ`(tsync)−∆t`D`

R(δΛ
`+1)

end for
(I − ν∆t`baseLcomp)δ~u = −∆t`D`

R(δV
`+1) for ` ≥ `base

~u`(tsync) := ~u`(tsync) + δ~u

Apply Synchronization Projection:
Solve Lcompes =

1
∆tsyncD

CC,comp~u(tsync) for ` ≥ `base
e`base
s = I(e`base

s , e`base−1
s )

~u(tsync) := ~u(tsync)−∆tsyncGCC,compes for ` ≥ `base

Freestream Preservation Solve:

Solve LcompeΛ =
(Λ(tsync)−1)
∆tsync η for ` ≥ `base

e`base

Λ = I(e`base

Λ , e`base−1
Λ )

~up = GcompeΛ

Average finer solution onto coarser levels:
for ` = `max − 1, `base,−1

~u`(tsync) = 〈~u`+1(tsync)〉 on C
n
`
ref
(Ω`+1)

s`(tsync) = 〈s`+1(tsync)〉 on C
n
`
ref
(Ω`+1)

Λ`(tsync) = 〈Λ`+1(tsync)〉 on C
n
`
ref
(Ω`+1)

end for
end Synchronize

Fig. 4. Synchronization for incompressible Navier-Stokes equations.

first solve a Helmholtz equation for a correction:

(I − ν∆t`baseLcomp)δ~u = ∆t`DR(δ~V
`+1) for ` ≥ `base (41)

At physical boundaries, the correction δ~u satisfies the homogeneous form
of the viscous boundary conditions for the velocity. If the base level has
a coarse-fine interface with level (`base − 1), the coarse-fine boundary
condition for δ~u is quadratic interpolation with 0’s on the coarser level
(`base−1): δ~u`base = I(δ~u`base , δ~u`base−1 = 0). Then, the correction is added
to the velocity field

~u` := ~u` + δ~u` for ` ≥ `base. (42)

(2) Apply multilevel projection To ensure that the velocity field is divergence-
free in a composite sense, we apply a composite projection during syn-
chronization, as in [19]. We solve a multilevel Poisson equation for the
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correction:

Lcompes = DCC,comp~ucomp for ` ≥ `base. (43)

As in [19], physical domain boundary conditions are the homogeneous
form of those used for the level projection. If `base > 0, coarse-fine bound-
ary conditions are required. When computing DCC,comp~ucomp, the coarse-
fine boundary condition is quadratic interpolation with the coarser-level
velocity field, linearly interpolated in time to tsync: ~u`base = I(~u`base , ~u`base−1(tsync)).
The coarse-fine boundary condition for the elliptic solve is e`bases = I(e`bases ,∆tsynce`base−1s ).
Once the correction has been computed, the velocity field is corrected:

~u` := ~u` −GCC,compe`s for ` ≥ `base. (44)

If `base > 0, the coarse-fine boundary condition for computing the gra-
dient is e`bases = I(e`bases ,∆tsynce`base−1s ). For all steps in the composite
projection, physical boundary conditions are the homogeneous form of
those used for the single-level projection.

(3) Compute freestream preservation correction The computation of
the freestream preservation correction is unchanged from that presented
in [19], and is presented again here for convenience. An elliptic equation
is first solved for the potential

LcompeΛ = η
(Λ− 1)
∆t`base

for ` ≥ `base. (45)

If required, the coarse-fine boundary condition is quadratic interpolation:
e`baseΛ = I(e`baseΛ , e`base−1Λ ). Then, a face-centered correction to the advection
velocities is computed:

~up = GcompeΛ for ` ≥ `base. (46)

Coarse-fine boundary conditions for the gradient are the same as those
used in the solve: e`baseΛ = I(e`baseΛ , e`base−1Λ ).

(4) Average fine solution onto coarser grids Finally, all quantities on
covered regions, including the face-centered ~up, are replaced by the aver-
age of the overlying fine-grid solutions.

2.4 Initialization

At the beginning of a computation, an initial velocity field is specified. Af-
ter a regridding operation, variables on any newly refined mesh are filled by
interpolating the underlying coarse-cell values, while any regions which have
been de-refined from a finer mesh are filled with averaged fine-level values.
Once this has been done, a set of initialization operations is performed to en-
sure that the new velocity field is divergence-free and to initialize the lagged
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Initialize(`base, t
init)

Project velocity field:
Solve Lcompφ = Dcomp~u for ` > `base
Apply correction: ~u` := ~u` −Gcompφ for ` > `base

Initialize ~up:

Solve LcompeΛ =
(Λ(tinit)−1)

∆t`base
η for ` > `base

e`base

Λ = I(e`base

Λ , 0`base−1)
~up = GcompeΛ

Initialize π:
π` = 0 for ` > `base
for n = 1, npasses
∆̃t = ∆t`max

2

for ` = `base, `max

Compute ~̃u∗,` as in normal timestep

Remove ∇π from ~̃u∗,`: ~̃u∗,` := ~̃u∗,` + ∆̃tGCC,`π`

Solve L`π` = DCC,`~u∗,`

Correct ~̃u`: ~̃u`(t` + ∆̃t) = ~̃u∗,` − ∆̃tπ`
end for

end for
end Initialize

Fig. 5. Initialization for incompressible Navier-Stokes equations.

variables π and eΛ (along with ~up), which are required for the single-level
updates. A pseudocode description of the initialization procedure appears in
Figure 5. For initialization, `base is the finest unchanged level (at the initial
time, `base = −1). ∆t`base is the most recent time step for level `base.

(1) Project Velocity field To ensure that the velocity field satisfies the
divergence constraint, a multilevel projection is applied to the velocity
field for all levels finer than `base. No correction is applied to the velocity
field on `base. If `base is greater than -1, the coarse-fine boundary condition
for the elliptic solve is a homogeneous quadratic coarse-fine interpolation
with zeroes in the coarse grid cells:

φ`base+1 = I(φ`base+1, 0`base). (47)

(2) Initialize Freestream Preservation CorrectionWhile the freestream
preservation correction need not be initialized at the start of the compu-
tation, it must be re-computed after regridding. First, an elliptic equation
is solved for the potential eΛ:

LcompeΛ =
Λ(tinit)− 1
∆t`base

η for ` ≥ `base. (48)
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If `base > 0, then the coarse-fine boundary condition for eΛ in the elliptic
solve is homogeneous quadratic interpolation: e`baseΛ = I(e`base , 0`base−1).
The face-centered freestream-preservation correction is then given by:

~up = GcompeΛ. (49)

Coarse-fine boundary conditions on eΛ when computing ~up are also e
`base
Λ =

I(e`base , 0`base−1).
(3) Initialize π During the single-level update, computation of the interme-

diate velocity field ~u∗ uses the lagged level pressure π`(t` − ∆t`

2
). During

the initialization step, we compute an approximation to the single-level
pressure. To initialize π, simplified non-subcycled single-level timesteps
are performed for all levels for which π must be initialized. The timestep
used for this initialization step is half the timestep computed for the
finest level in the AMR hierarchy (∆̃t = ∆t`max

2
). Since there is no ex-

isting estimate of π when performing the velocity predictor and viscous
updates, the pressure gradient terms are not included for these steps. If
a more-accurate estimate of π is required, then a second iteration of the
initialization timesteps may be performed. However, in practice we have
found one iteration to be sufficient to compute an adequate estimate for
π.
First, we compute ~̃u∗ as in a normal timestep, using the pressure gra-

dient term if it is available. All of the coarse-fine boundary conditions for
the initialization timesteps are the same as are used in a regular advance.
Then, we project ~̃u∗ to compute π, solving

L`π` =
1

∆̃t
DCC,`(ũ∗) (50)

π` = I(π`, π`−1).

Then, ~̃u∗ is corrected for use as a boundary condition for initializing any
finer levels:

~̃u`(t` + ∆̃t) := ~̃u∗ − ∆̃tGCC,`π`. (51)

3 Results

In order for this method to be useful, it must satisfy three criteria. First, solu-
tions computed with local refinement should converge at 2nd-order rates (just
as single-level solutions do). Second, solutions computed with well-placed local
refinement should be as accurate as a uniform-mesh solution with the equiv-
alent resolution. Finally, the use of local refinement for appropriate problems
should result in significant savings in either computational time or size when
compared to the equivalent uniform-mesh solution.
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Fig. 6. Vortex ring test problem. Yellow vorticity isosurface depicts location of vortex
ring, green lines depict streamlines, blue box is example of refined region. Black box
depicts computational domain.

3.1 Convergence and Accuracy

To demonstrate the convergence and accuracy of this approach, we use a single
vortex ring in a cubic domain. The vorticity distribution is specified, and the
initial velocity is then computed based on the initial vorticity field. Each vortex
ring is specified by the center of the vortex ring (x0, y0, z0), the radius of the
center of the local cross-section of the ring from the center of the vortex ring
r, and the strength of the vortex ring Γ.

The cross-sectional vorticity distribution in the vortex ring is given by

ω(ρ) =
Γ

aσ2
e(
−ρ

σ
)3 (52)

where ρ is the local distance from the center of the ring cross-section, a =
2268.85, and σ = 0.0275.

For this problem, the vortex ring is centered at (x0, y0, z0) = (0.5, 0.5, 0.4),
with a radius of 0.2, and strength Γ of 1.5. This test problem is depicted in
Figure 6.

The L2 norm of error in the x−velocity is shown in Table 3.1 (solution errors
for y− and z− velocities are similar). The left column indicates the number of
cells on one side of the coarsest domain (so the 1

h0
= 16 is a 163 computation).

The solution converges at second-order rates both with and without local
refinement, which indicates that the presence of coarse-fine interfaces is not
interfering with convergence. Comparing the errors for equivalent resolutions
demonstrates the effectiveness of the local refinement. For example, the error
for the 1283 single-level case should be compared with the 643 nref = 2 case,
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1
h0

single-level rate nref = 2 rate nref = 4 rate nref = (2, 2) rate

16 1.5101e-04 – 5.1954e-05 – 1.2172e-05 – 1.0350e-05 –

32 4.2104e-05 1.84 1.0468e-05 2.31 2.6984e-06 2.17 2.8654e-06 1.85

64 7.8983e-06 2.41 2.4755e-06 2.08 6.7945e-07 1.99 6.6004e-07 2.12

128 1.8712e-06 2.08 5.6389e-07 2.13 – – – –

256 4.5796e-07 2.03 – – – – – –

Table 1
Convergence of x−velocity for single-vortex test problem
the 32×32×32 nref = 4 case, and the 323 nref = (2, 2) case. The nref = (2, 2)
case refers to 2 levels of refinement, each with a factor of 2 refinement. This
gives an equivalent resolution to a single nref = 4 refinement. This case is
included to demonstrate that the subcycled algorithm maintains its accuracy
in the case with more than one level of refinement, and is a good indication
that the synchronization step is correct for the case where `base is greater than
0.

3.2 Computational performance

To demonstrate the performance of the AMR algorithm, we measured the
runtimes and total number of cells advanced for the vortex-ring example for a
single-level 2563 computation, along with AMR computations with equivalent
resolution. To make the performance effects of AMR clear, we then normalized
the runtimes and cell counts by the single-level numbers, as shown in Figure
7. In this figure, the refinement ratio of zero corresponds to a single-level
2563 run, while the refinement ratio of 2 is a 1283 base grid with one level of
refinement with a refinement ratio of 2, etc. The difference between the timing
line and the cell-count line in this case represents the overhead of adaptivity
(regridding, synchronization, etc). Note that while the total number of cells
advanced for nref = 4 is only slightly smaller than the number of cells advanced
for nref = 2, the execution time is noticeably smaller. While approximately
the same amount of work is done performing the fine-level updates, there are
only half as many synchronization steps as the nref = 2 case.

3.3 Vortex Merger example

To demonstrate that the algorithm is robust enough to handle more complex
problems, we also computed an adaptive solution for a viscous vortex ring
merger problem, similar to the ones studied computationally in [17,3,4] and
experimentally in [18,5]. The initial conditions are two vortex rings which are
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Fig. 7. Normalized run times and number of cells advanced for the 2563 equivalent
resolution vortex-ring problem. Refinement ratio of 0 is the non-AMR case.

angled toward each other by an inclination angle φ from horizontal. The vortex
rings are each initialized with a solid vorticity core, with ω = ωinterior inside
the vortex ring, and ω = 0 outside. The parameters used for this example are:

ωinterior = 300.0

r = 0.02

R = 0.1

φ1 =
π

9
, ~x1 = (0.5, 0.625.0.5)

φ2 =
−π
9
, ~x2 = (0.5, 0.375, 0.5)

where r is the cross-sectional radius of the vortex ring core, and R is the radius
of the vortex ring around its center. ~x1 and ~x2 and φ1 and φ2 are the centers
and inclinations of the two vortex rings. The viscosity ν is 0.001.

The problem was run in a unit cube with a 643 base mesh with 2 levels
of refinement using nref = 4. Refinement is added wherever the undivided

vorticity magnitude (h` ∗ (ω2x + ω2y + ω2z)
1
2 is greater than 0.0625. Evolution of

an isosurface of the vorticity magnitude is shown in Figure 3.3. As can be seen,
the two vortices merge in a fairly complicated way, with the refined regions
smoothly following the vortical structures as they evolve.

To better see the structure of the merging vortices, we show the log10 of
the vorticity magnitude in a slice through the x = 0.505 plane in figure 3.3;
a closeup of the center as the vortex rings merge is shown in Figure 3.3,
which demonstrates the how the vortex ring cores are deformed by differential
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(a) t = 0 (b) t = 0.1347687

(c) t = 0.2114612 (d) t = 0.2889325

Fig. 8. Vortex merger problem – isosurface of |ω| = 50 (a) at initial time, (b) after
60 timesteps, (c) after 90 timesteps, and (d) after 120 timesteps. Black lines depict
streamlines, green boxes are level 1 grids, and blue boxes are level 2 grids. Note
that for clarity the grid boxes are only shown in the rear half of the domain.

shearing and vorticity diffusion. As the flow progresses, sheets of vorticity (seen
in cross-section as narrow strips) are stripped from the central vortex cores and
are then wrapped around and transported away. A longer-term evolution is
shown in Figure 3.3, which shows the role of vortex stretching in the formation
of the longer-term vortical structures in the flow.
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(a) t = 0 (b) 5 timesteps

(c) 10 timesteps (d) 15 timesteps

(e) 20 timesteps (f) 25 timesteps

Fig. 9. Vortex merger problem – slice at x = 0.505 showing log10|ω| at (a) initial
time and after (b) 5 timesteps, (c) 10 timesteps, (d) 15 timesteps, (e) 20 timesteps,
and (f) 25 timesteps. Colormap scale is from 0.5 to 2.0.
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(a) t = 0.02258 (b) t = 0.02740

(c) t = 0.02322 (d) t = 0.03706

(e) t = 0.04198 (f) t = 0.04688

Fig. 10. Vortex merger problem – slice at x = 0.505 showing log10|ω| after (a) 10
timesteps (b) 12 timesteps, (c) 14 timesteps, (d) 16 timesteps, (3) 18 timesteps, and
(f) 20 timesteps. Colormap scale is from 0.5 to 2.0.
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(a) t = 0 (b) t = 0.07217

(c) t = 0.13487 (d) t = 0.21157

(e) t = 0.28906 (f) t = 0.37270

Fig. 11. Vortex merger problem – slice at x = 0.505 showing log10|ω| at (a) initial
time and after (b) 30 timesteps, (c) 60 timesteps, (d) 90 timesteps, (e) 120 timesteps,
and (f) 150 timesteps. Colormap scale is from 0.5 to 2.0.
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4 Conclusions

In this work, an algorithm was presented to compute solutions to the in-
compressible Navier-Stokes equations with local refinement in time and space
using a cell-centered discretization of the projection operator. Other key inno-
vations differentiating this work from past work are the use of fully multilevel
elliptic solves for synchronization and the use of an L0-stable semi-implicit
scheme (rather than Crank-Nicolson) to discretize the diffusive terms. We
have demonstrated second-order convergence of the method, as well as the
computational efficiencies enabled by the use of AMR.

This work will be extended in several directions. Extension to flows with vari-
able properties, which will also entail the implementation of tensor solvers
for the diffusion terms, is one such direction. Also, we plan to extend the
ideas in this work to computing flows in complex geometries, using the em-
bedded boundary approach [11]. Another possible direction would be the im-
plementation of higher-order finite-volume schemes, such as those found in
[6]. In general, we forsee application of these ideas to other coupled elliptic-
parabolic-hyperbolic systems, such as those found in porous media flows [23]
and nonideal MHD [26].

A Quadratic Coarse-Fine Boundary Interpolation

This interpolation scheme is motivated by the requirement to construct con-
sistent discretizations of second-order operators. Given the fine- and coarse-
level variables ϕf and ϕc,valid, we compute a single-level vector field ~Gf =
(Gf

0 , . . . G
f
D−1) that approximates the gradient to sufficient accuracy so that,

its divergence is at least an O(h) approximation to the Laplacian. For each
Ωf,k ∈ R(Ωf ), we construct an extension ϕ̃ of ϕf .

ϕ̃ :Ω̃fk → R
m

Ω̃fk = ( ∪
±=+,−

D−1∪
d=0
Ωfk ± e

d) ∩ Γf .

Then, for each i + 1
2
e
d such that both i, i + e

d ∈ Ω̃fk , we can compute a
centered-difference approximation to the gradient on a staggered grid

G
f

d,i+
1
2

ed
=
1

hf
(ϕ̃i+ed − ϕ̃i).

For this estimate of the gradient to be accurate to O(h2), it is necessary to
compute an O(h3) extension of ϕf . On Ω̃fk ∩Ωf , the values for ϕ̃ will be given

26



by ϕ̃i = ϕ
f
i
. The values for the remaining points in Ω̃fk − Ωf will be obtained

by interpolating using ϕf and ϕc.

To perform this interpolation, we first observe that given i ∈ Ω̃fk − Ωf , there
is a unique choice of ± and d, such that i ∓ e

d ∈ Ωfk . Having specified that
choice, the interpolant is constructed in two steps (figure A.1).

(i) Interpolation in directions orthogonal to e
d. We compute

x =
i+ 1

2
u

nref
− (ic + 1

2
u)

where i
c = Cnref (i). The real-valued vector x is the displacement of the cell

center i on the fine grid from the cell center at i
c on the coarse grid, scaled

by hc.

ϕ̂i = ϕc
i
c+

∑

d′ 6=d

[(
xd′(D

1,d′ϕc)ic+
1
2
(xd′)

2(D2,d′ϕc)ic
)
+

∑

d′′ 6=d,d′′ 6=d′
xd′xd′′(D

d′d′′ϕc)ic
]

The second sum has only one term if D = 3, and no terms if D = 2.

(ii) Interpolation in the normal direction.

ϕ̃i = IBq (ϕ
f , ϕc,valid) ≡ 4a+ 2b+ c , x̃d = xd − 1

2
(nref + 3)

where a, b, c are computed to interpolate between the collinear data

((i± 1
2
(nlref − 1)ed)h, ϕ̂i),

((i∓ e
d)h, ϕl

i∓ed
),

((i∓ 2ed)h, ϕl
i∓2ed)

In (i), the quantitiesD1,d′ϕc, D2,d′ϕc andDd′d′′ϕc are difference approximations
to ∂

∂xd′
, ∂2

∂x2
d′
, and ∂2

∂xd′∂xd′′
, respectively. D1,dϕ must be accurate to O(h2), while

the other two quantities need only be O(h). Only values in Ωc
valid are used to

compute these difference approximations. For D1,d′ϕ and D2,d′ϕ, we use 3-
point stencils, centered if possible, or shifted as required to consist of points
on Ωcvalid.

(D1,d′ϕ)i =





1
2
(ϕc

i+ed
′ − ϕc

i−ed
′ ) if both i± e

d′ ∈ Ωcvalid
±3
2
(ϕc

i±ed
′ − ϕc

i
)∓ 1

2
(ϕc

i±2ed
′ − ϕc

i±ed
′ ) if i± e

d′ ∈ Ωcvalid, i∓ e
d′ 6∈ Ωcvalid

0 otherwise
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x xx

Fig. A.1. Interpolation at a coarse-fine interface. Left stencil is the usual stencil.
Right stencil is the modified interpolation stencil; since the upper coarse cell is cov-
ered by a fine grid, use shifted coarse grid stencil (open circles) to get intermediate
values (solid circles), then perform final interpolation as before to get “ghost cell”
values (circled X’s). Note that to perform interpolation for the horizontal coarse-fine
interface, we need to shift the coarse stencil left.

(D2,d′ϕ)i =





ϕc
i+ed

′ − 2ϕci + ϕc
i−ed

′ if both i± e
d′ ∈ Ωcvalid

ϕc
i
− 2ϕc

i±ed
′ + ϕc

i±2ed
′ if i± e

d′ ∈ Ωcvalid, i∓ e
d′ 6∈ Ωcvalid

0 otherwise

x

x

Fig. A.2. Mixed-derivative approximation illustration. The upper-left corner is cov-
ered by a finer level so the mixed derivative in the upper left (the uncircled x) has
a stencil which extends into the finer level. We therefore average the mixed deriva-
tives centered on the other corners (the filled circles) to approximate the mixed
derivatives for coarse-fine interpolation in three dimensions.

In the case of Dd′d′′ϕc, we use an average of all of the four-point difference
approximations ∂2

∂xd′∂xd′′
centered at d′, d′′ corners adjacent to i such that all

four points in the stencil are in Ωcvalid (Figure A.2)

(Dd′d′′

cornerϕ
c)

i+
1
2

ed
′
+
1
2

ed
′′
=





1
h2 (ϕi+ed

′
+ed

′′ + ϕi − ϕ
i+ed

′ − ϕ
i+ed

′′ ) if [i, i+ e
d′ + e

d′′ ] ⊂ Ωcvalid
0 otherwise
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(D2,d′d′′ϕc)i =





1
Nvalid

∑
s′=±1

∑
s′′=±1(D

d′d′′ϕc)
i+
1
2
s′ed

′
+
1
2
s′′ed

′′
if Nvalid > 0

0 otherwise

where Nvalid is the number of nonzero summands. To compute (ii), we need
to compute the interpolation coefficients a b, and c.

a =
ϕ̂− (nref · |xd|+ 2)ϕi∓ed + (nref · |xd|+ 1)ϕi∓2ed

(nref · |xd|+ 2)(nref · |xd|+ 1)
b = ϕi∓ed − ϕi∓2ed − a

c = ϕi∓2ed

B Unsplit Upwind Tracing

Our unsplit, second-order upwind advection scheme has its origins in Colella
[12] and Saltzman [25].

We are solving a hyperbolic system of equations of the form

∂U

∂t
+

D−1∑

d=0

∂F d

∂xd
= S (B.1)

where F d = AdU . U is the quantity being advected, while Ad is the advection
velocity in the d−direction.

B.1 Outline

Given Un
i
and Sn

i
, we want to compute a second-order accurate estimate of

the face-centered fluxes: F
n+

1
2

i+
1
2

ed
≈ F d(x0 + (i +

1
2
e
d)h, tn + 1

2
∆t). In outline,

the method is given as follows.

(1) Compute slopes ∆dUi, for 0 ≤ d < D (the definition of ∆dUi is given in
section B.2):

(2) Compute the effect of the normal derivative terms and the source term
on the extrapolation in space and time from cell centers to faces. For
0 ≤ d < D,

Ui,±,d = Un
i
+ 1

2
(±I − ∆t

h
Ad

i
)(∆dUi) (B.2)

Ui,±,d = Ui,±,d +
∆t

2
Sn

i
(B.3)
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(3) Compute estimates of F d suitable for computing 1D flux derivatives ∂F d

∂xd

using a Riemann solver, R. In this case, the Riemann solve is simply
choosing the upwind direction based on Ad.

F 1D

i+
1
2

ed
= R(Ui,+,d, Ui+ed,−,d, d) (B.4)

R(Ui,+,d, Ui+ed,−,d, d, A
d) =




Ui,+,d if A

d > 0

Ui+ed,−,d otherwise
(B.5)

(4) In 3D compute corrections to Ui,±,d corresponding to one set of transverse
derivatives appropriate to obtain (1, 1, 1) diagonal coupling. In 2D skip
this step.

Ui,±,d1,d2 = Ui,±,d1
− ∆t
3h
(F 1D

i+
1
2

ed2
− F 1D

i−
1
2

ed2
) (B.6)

(5) In 3D compute fluxes corresponding to corrections made in the previous
step. In 2D skip this step.

F
i+
1
2

ed1 ,d2
= R(Ui,+,d1,d2 , Ui+ed1 ,−,d1,d2

, d1) (B.7)

d1 6= d2, 0 ≤ d1, d2 < D

(6) Compute final corrections to Ui,±,d due to the final transverse derivatives.

2D: U
n+

1
2

i,±,d = Ui,±,d −
∆t

2h
(F 1D

i+
1
2

ed1
− F 1D

i−
1
2

ed1
) (B.8)

d 6= d1, 0 ≤ d, d1 < D

3D: U
n+

1
2

i,±,d = Ui,±,d −
∆t

2h
(F

i+
1
2

ed1 ,d2
− F

i−
1
2

ed1 ,d2
) (B.9)

− ∆t

2h
(F

i+
1
2

ed2 ,d1
− F

i−
1
2

ed2 ,d1
)

d 6= d1 6= d2, 0 ≤ d, d1, d2 < D

(7) Compute final estimate of fluxes.

F
n+

1
2

i+
1
2

ed
= R(U

n+
1
2

i,+,d , U
n+

1
2

i+ed,−,d
, d) (B.10)

(8) Update the solution using the divergence of the fluxes.

Un+1
i

= Un
i
− ∆t

h

D−1∑

d=0

(F
n+

1
2

i+
1
2

ed
− F

n+
1
2

i−
1
2

ed
) (B.11)

B.2 Slope Calculation

We will use the 4th order slope calculation in Colella and Glaz [10]
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∆dUi =
2

3
((U − 1

4
∆d
2U)i+ed − (U +

1

4
∆d
2U)i−ed)

∆d
2Ui =

1
2
(Un

i+ed
− Un

i−ed
)

∆d
−Ui = Un

i
− Un

i−ed
,
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