Solving Partial Differential Equations Using The Chombo Framework for
Block-Structured Adaptive Mesh Refinement Algorithms

Dan Martin
Applied Numerical Algorithms Group (ANAG)

Lawrence Berkeley National Laboratory
March 21, 2005

Adaptive Mesh Refinement (AMR)
(Berger & Oliger, 1984):
Approach:

e locally refine patches of the domain where needed to improve solution

e cach patch is a logically rectangular structured grid
— better efficiency of data access
— can amortize overhead of irregular operations over large

number of regular operations

e refined grids are dynamically created and destroyed

©
Wl
e
®
©
WO

tn+1
S
2
n

t
refinement
level

Refined regions are organized into logically rectangular patches

1] /7
n Ly
L1

F A

Block-Structured Local Refinement (Berger and Oliger, 1984)

Refinement performed in time as well as in space.

1 |\
“_ﬂ“-l-_ !

Chombo: a Software Framework for Block-Structured AMR
Requirement: to support a wide variety of applications that use block-structured
AMR using a common software framework.

e Mixed-language model: C++ for higher-level data structures, Fortran for
regular single-grid calculations.

e Reuseable components. Component design based on mapping of
mathematical abstractions to classes.

e Build on public-domain standards: MPI, HDF5, VTK.

e Interoperability with other SciDAC ISIC tools: grid generation (TSTT), solvers
(TOPS), performance analysis tools (PERC).

Previous work: BoxLib (LBNL/CCSE), KeLP (Baden, et. al., UCSD), FIDIL
(Hiltinger and Colella).

Layered Design

e Layer 1. Data and operations on unions of boxes — set calculus, rectangular
array library (with interface to Fortran), data on unions of rectangles, with
SPMD parallelism implemented by distributing boxes over processors.

e Layer 2. Tools for managing interactions between different levels of refinement
in an AMR calculation - interpolation, averaging operators, coarse-fine
boundary conditions.

e Layer 3. Solver libraries - AMR-multigrid solvers, Berger-Oliger
time-stepping.

e Layer 4. Complete parallel applications.

e Utility layer. Support, interoperability libraries — API for HDF51/0,
visualization package implemented on top of VTIK, C API’s.

Examples of Layer 1 Classes (BoxTools)

e IntVect i € Z<%. Can translate 4; + 15, coarsen 2, refine 7 * s.

eBox BC Z%isa rectangle: B = [tow, thign). B can be translated, coarsened,
refined. Supports different centerings (node-centered vs. cell-centered) in each
coordinate direction.

e IntVectSet 7 C Z< is an arbitrary subset of Z¢. T can be shifted, coarsened,
refined. One can take unions and intersections, with other IntVectSet s and
with Boxes, and iterate over an IntVectSet . Useful for representing irregular
sets.

e FArrayBox A(Box B, int nComps) : multidimensional arrays of Reals
constructed with B specifying the range of indices in space, nCompthe number
of components. Real* FArrayBox::dataPointer returns pointer to the
contiguous block of data that can be passed to Fortran.

Example: explicit heat equation solver on a single grid

/[l C++ code:

Box domain(IntVect:Zero,(nx-1)*IntVect:Unit);
FArrayBox soln(grow(domain,l), 1);
soln.setVal(1.0);

for (int nstep = O;nstep < 100; nstep++)
{
heatsub2d (soln.dataPtr(0),
&(soln.loVect()[0]), &(soln.hiVect()[0]),
&(soln.loVect()[1]), &(soln.hiVect()[1]),
domain.loVect(), domain.hiVect(),
&dt, &dx, &nu);

c Fortran code:
subroutine heatsub2d(phi,nlphiO, nhphiO,niphil, nhphil,
& nireg, nhreg, dt, dx, nu)

real*8 phi(nlphiO:nhphiO,nlphil:nhphil)
real*8 dt,dx,nu
integer nlreg(2),nhreg(2)

c Remaining declarations, setting of boundary conditions goes here.

do j = nlreg(2), nhreg(2)
do i = nlreg(1), nhreg(1)
lapphi = (phi(i+1,j)) +phi(i,j+1) +phi(i-1,)) +phi(i,j-1)
& -4.0d0*phi(i,j))/(dx*dx)

phi(i,j) = phi(i,j)) + nu*dt*lapphi
enddo
enddo

return
end

ChomboFortran
ChomboFortran is a set of macros used primarily by Chombo for:
e Managing the C++/Fortran interface

e Writing Dimension-independent (Fortran) code

Advantages to ChomboFortran
e enables fast (2d) prototyping, and simple extension to 3d.

e Simplifies code maintenence and duplication by reducing the need for
dimension-specific code

ChomboFortran C++/Fortran interface (Previous example)
C++ side:

heatsub2d (soln.dataPtr(0),
&(soln.loVect()[0]), &(soln.hiVect()[0]),
&(soln.loVect()[1]), &(soln.hiVect()[1]),
domain.loVect(), domain.hiVect(),
&dt, &dx, &nu);

Fortran side (heat.f):

subroutine heatsub2d(phi,iphilo0, iphihiO,iphilol, iphihil,
& domboxlo, domboxhi, dt, dx, nu)

real*8 phi(iphiloO:iphihiO,iphilol:iphihil)
real*8 dt,dx,nu
integer domboxlo(2),domboxhi(2)

Managing the interface is error-prone and dimensionally dependent (since 3d
will have more index extents for array sizing)

With ChomboFortran Macros:
C++ side:

FORT_HEATSUB(CHF_FRA(soln),
CHF_BOX(domain),
CHF_REAL(dt), CHF_REAL(dx), CHF_REAL(nu));

ChomboFortran side (heatF.ChF):

subroutine heatsub(CHF_FRA[phi], CHF_BOX[domain],
& CHF_REAL[dt], CHF_REAL[dx], CHF_REAL[nu])

(Note that ChomboFortran declares the entire argument list as well)

Dimension Independence with ChomboFortran:

e Looping macros: CHEMULTIDO

e Data Access: CHEIX
Replace:

do j = nlreg(2), nhreg(2)
do i = nlreg(1), nhreg(l)
phi(i,j) = phi(i,j) + nu*dt*lphi(i,j)
enddo
enddo

With:

CHF_MULTIDO[dombox; i;j;K]
phi(CHF _IX[i;j;k]) = phi(CHF_IX[i;j;Kk])

& + nurdttlphi(CHF_IX[i:j:k])

CHF_ENDDO

More ChomboFortran support for Dimension-independence:

CHEDDECLand CHEDTERMMacros:

Replace:
integer i,j,k
real*8 x,y,z
X = i*dx
y = j*dx
z = k*dx
With:

integer CHF_DDECL];j;K]
REAL T CHF_DDECL[x;y;z]

CHF _DTERM]
X = 1*dx;
y = jfdx;

z = k*dx]

Distributed Data on Unions of Rectangles
Provides a general mechanism for distributing data defined on unions of rectangles onto
processors, and communications between processors.

(0.1)

(1.0

0.0

21) 1)

®2 @2)

(20)

(4.2

(4.0

(50

e Metadata of which all processors have a copy: BoxLayout is a collection of Boxes and
processor assignments: { By, px. } 2S7**. DisjointBoxLayout:public BoxLayout is a
BoxLayout for which the Boxes must be disjoint.

e template <class T> LevelData<T> and other container classes hold data
distributed over multiple processors. Foreachk = 1 ... nGrids ,an ”array” of type
T corresponding to the box By, is allocated on processor pi. Straightforward API’s for
copying, exchanging ghost cell data, iterating over the arrays on your processor in a
SPMD manner.

Software Reuse by Templating Dataholders
Classes can be parameterized by types, using the class template language
feature in C++.

BaseFAB<T> is a multidimensional array for any type T.
FArrayBox: public BaseFAB<Real>

In LevelData<T> , T can be any type that “looks like” a multidimensional array.

Examples include:

¢ Ordinary multidimensional arrays, e.g. LevelData<FArrayBox>
e A composite array type for supporting embedded boundary computations

e Binsorted lists of particles, e.g. BaseFab<List<ParticleType>>

Example: explicit heat equation solver, parallel case

p=0 p=1

p=2

=3 [P0 p=1

p=2 (3 =0

Want to apply the same algorithm as before, except that the data for the domain
is decomposed into pieces and distributed to processors.

e LevelData<T>::exchange() : obtains ghost cell data from valid regions on
other patches.
e Datalterator : iterates over only the patches that are owned on the current

processor.

/[C++ code:
Box domain(IntVect:Zero,(nx-1)*IntVect:Unit);

DisjointBoxLayout dbl;
/I Break domain into blocks, and construct the DisjointBoxLayout.

makeGrids(domain,dbl,nx);
LevelData<FArrayBox> phi(dbl, 1, IntVect::TheUnitVector());

for (int nstep = O;nstep < 100;nstep++)

{

I/l Apply one time step of explicit heat solver: fill ghost cell values,
/[and apply the operator to data on each of the Boxes owned by this
/[processor.

phi.exchange();

/I lterator iterates only over those boxes that are on
/I this processor.
Datalterator dit = dbl.datalterator();
for (dit.reset();dit.ok();++dit)
{
FArrayBox& soln = phi[dit()];
Box& region = dbl[dit()];
FORT_HEATSUB(CHF_FRA(soln),
CHF_BOX(region),
CHF_BOX(domain),
CHF_REAL(dt), CHF_REAL(dx), CHF _REAL(nu));

Layer 2: Coarse-Fine Interactions (AMRTools).
The operations that couple different levels of refinement are among the most
difficult to implement AMR.

e Interpolating between levels (Finelnterp).
e Averaging down onto coarser grids (CoarseAverage).
e Interpolation of boundary conditions (PWLFillpatch, QuadCFinterp).

e Managing conservation at coarse-fine boundaries (LevelFluxRegister).

These operations typically involve interprocessor communication and irregular
computation.

Example: class LevelFluxRegister

A A A s
yd -~
yd o~
yd <
// 7474
p d d

74

s
S~
S~

U®:=U°+ At°(F2° , —lZFf’S)

ic__ 1 if 1
1 5e Z — if 5e
1

The coarse and fine fluxes are computed at different times in the program, and on
different processors. We rewrite the process in the following steps:

SF =0
OF :=0F — At°F°
SF :=0F + At < F/ >
U® = U° + Dr(6F)

A LevelFluxRegister object encapsulates these operations:

e LevelFluxRegister::setToZero()

e LevelFluxRegister::incrementCoarse : given a flux in a direction for
one of the patches at the coarse level, increment the flux register for that
direction.

e LevelFluxRegister::incrementFine : given a flux in a direction for one

of the patches at the fine level, increment the flux register with the average of
that flux onto the coarser level for that direction.

e LevelFluxRegister::reflux : given the data for the entire coarse level,
increment the solution with the flux register data for all of the coordinate
directions.

Example: class QuadCFInterp

X X
X | Xe® @ F
@ X ® @ XXX
X X— X @ O 108 |0 @@ 1
Cpottom! ’
| o
O

For many elliptic operator discretizations, require quadratic interpolation involving the

coarse- and fine-grid data.

A QuadCFInterp object encapsulates this functionality:

I/l define stencils, etc for the given grid configurations
QuadCFInterp(const DisjointBoxLayout& a fineBoxes,
const DisjointBoxLayout* a_coarBoxes,
Real a dxFine,
int a_refRatio,
int a_nComp,
const ProblemDomain& a_domf);

/[fill in ghost cells of phif with interpolated values
QuadCFInterp::coarseFinelnterp(LevelData<FArrayBox>& a_phif,
LevelData<FArrayBox>& a_phic);

Layer 3: Reusing Control Structures Via Inheritance (AMREIliptic,
AMRTimeDependent).

AMR has multilevel control structures which are largely independent of the
details of the operators and the data.

e Multigrid iteration on a union of rectangles. (single AMR level)
e Multigrid iteration on an AMR hierarchy. (multilevel AMR solve)

¢ Berger-Oliger timestepping (refinement in time).

To separate the control structure from the details of the operations that are being
controlled, we use C++ inheritance in the form of interface classes.

Elliptic Solver Example:

class Multigrid

{
LevelOp* m_opPtr;

}

LevelOp defines what it means to evaluate the operator, and other functions
associated with that operator.

e define(..)

e CFInterp(..)

e new_levelop()
e smooth(..)

e applyOp(..)

o getFlux(..)

The use of interface classes such as this one is a common idiom in Layer 3 tools. It
allows one to reuse control structures (multigrid iteration, Berger-Oliger
time-stepping) by using inheritance to define the interface to the operator.

LevelOp -derived operator classes:

e PoissonOp

e HelmholtzOp

Elliptic Solvers

¢ LevelSolver — Solve an elliptic equation on a single AMR level (union of
boxes). Includes Coarse-fine boundary conditions from coarser level, if relevant.

e AMRSolver — Solve an elliptic equation on a multilevel hierachy of grids,
using composite AMR operators.

int numlevels, baselevel,;

Vector<DisjointBoxLayout> vectGrids;

Vector<ProblemDomain> vectDomain;

Vector<int> vectRefRatio;

Vector<Real> vectDx;

setGrids(vectGrids, vectDomain, vectDx,
vectRefRatio, numlevels, baselevel);

PoissonOp levelop;
levelop.setDomainGhostBC(domghostbc);

AMRSolver amrSolver(vectGrids, vectDomain, vectDx, vectRefRatio,
numlevels, baselevel, &levelop, ncomp);

Vector<LevelData<FArrayBox>* > phi(numlevels, NULL);
Vector<LevelData<FArrayBox>* > rhs(numlevels, NULL);

defineStorageAndRHS(phi, rhs, vectGrids);

amrSolver.solveAMR(phi, rhs);

Example: AMR / AMRLevel interface for Berger-Oliger timestepping

tn+l

sync sync
t"
sync
tn
level level level
0 1 2
t
refinement
level

We implement this control structure using a pair of classes.

class AMR : manages the Berger-Oliger time-stepping process.

class AMRLevel : collection of virtual functions called by an AMRobject that perform
the operations on the data at a level, e.g.:

e virtual void AMRLevel::advance() = O advances the data at a level by one
time step.
e virtual void AMRLevel::postTimeStep() = 0 performs whatever

sychronization operations required after all the finer levels have been updated.

AMRhas as member data a collection of pointers to objects of type AMRLevel, one for each
level of refinement:

Vector<AMRLevel*> m_amrlevels;
AMRkcalls the various member functions of AMRLevel as it advances the solution in time:
m_amrlevels[currentLevel]->advance();

The user implements a class derived from AMRLevel that contains all of the functions in
AMRLevel:

class AMRLevelUpwind : public AMRLevel
/I Defines functions in the interface, as well as data.

virtual void AMRLevelUpwind::advance()

{

/[Advances the solution for one time step.

}

To use the AMRclass for this particular application, mamrlevel[k] will point to objects
in the derived class, e.g.,

AMRLevelUpwind* amrLevelWavePtr = new AMRLevelUpwind(...);
m_amrlevel[k] = static_cast <AMRLevel*> (amrLevelWavePtr);

Upwind Advection Solver

e Simple constant-velocity advection equation:

ou -
— +AV-U =0
5 + AV
e Discretize Laplacian on AMR grid using simple 1st-order upwind approach.

Piecewise-linear interpolation in space for coarse-fine boundary conditions.

¢ Refinement in time: linear interpolation in time for coarse-fine boundary
conditions, since U is a conserved quantity, maintain conservation at coarse-fine

interface using refluxing.

Using Chombo AMRTimeDependent library for Upwind advection Equation

e AMRLevelUpwind: public AMRLevel class — derived from base
AMRLevel class, fills in the specific functionality necessary for

implementing the upwind advection equation solver algorithm:

advance() —advance a single AMR level by one timestep using
1st-order upwind.

postTimeStep() — synchronization operations: flux correction,
average finer levels onto covered regions.

tagCells(IntVectSet& tags) — specify which cells on a given AMR
level will be refined.

regrid(const Vector<Box>& newGrids) — given a new grid
configuration for this level, re-initialize data.

initialData() — initialize data at the start of the computation.

computeDt() — compute the maximum allowable timestep based on
the solution on this level

e AMRLevelUpwindFactory: public AMRLevelFactory class —
derived from base AMRLevelFactory class. Used by AMRto define a new
AMRLevelUpwind object.

— virtual AMRLevel* new _amrlevel() const —returns a pointer to
a new AMRLevelUpwind object.

— Can also use to pass information through to all AMRLevelUpwind s in a
consistent manner (ex. advection velocity, CFL number)

Sample Main program

/[Set up the AMRLevel... factory
AMRLevelUpwindFactory amrLevelFact;
amrLevelFact.CFL(cfl);
amrLevelFact.advectionVel(advection_velocity);

AMR amr;

/[Set up the AMR object with AMRWaveEqgnFactory
amr.define(maxLevel,refRatios,probDomain,&amrLevelFact);

/[initialize hierarchy of levels from scratch for AMR run
amr.setupForNewAMRRun();

amr.run(stopTime,nstop);

amr.conclude();

/[Advance by one timestep
Real AMRLevelUpwind::advance()
{
/[Copy the new to the old
m_UNew.copyTo(m_UQId);

/I fill in ghost cells, if necessary
AMRLevelUpwind* coarserLevelPtr = NULL;

/I interpolate from coarser level, if appropriate
if (m_level > 0)

{

coarserLevelPtr = getCoarserLevel();

/l get old and new coarse-level data

LevelData<FArrayBox>& crseDataOld = coarserlLevelPtr->m_UOId,;
LevelData<FArrayBox>& crseDataNew = coarserLevelPtr->m_UNew;
const DisjointBoxLayout& crseGrids = crseDataNew.getBoxes();

Real newCrseTime = coarserLevelPtr->m_time;
Real oldCrseTime = newCrseTime - coarserLevelPtr->m_dt;

Real coeff = (m_time - oldCrseTime)/coarserLevelPtr->m_dft;

const ProblemDomain& crseDomain = coarserLevelPtr->m_problem_domain;
int nRefCrse = coarserlLevelPtr->refRatio();
int nGhost = 1;

PiecewiseLinearFillPatch filpatcher(m_grids, crseGrids,

m_UNew.nComp(), crseDomain,
nRefCrse, nGhost);

filpatcher fillinterp(m_UOId, crseDataOld, crseDataNew,
coeff, 0, O, m_UNew.nComp());

/[exchange copies overlapping ghost cells on this level
m_UOId.exchange();

/[now go patch-by-patch, compute upwind flux, and do update

/Il iterator will only reference patches on this processor
for (dit.begin(); dit.ok(); ++dit)

{

const Box gridBox = m_grids.get(dit());
FArrayBox& thisOldSoln = m_UOld|[dit];
FArrayBox& thisNewSoln = m_UNew/[dit];
FluxBox fluxes(gridBox, thisOldSoln.nComp());

I/l loop over directions
for (int dir=0; dir<SpaceDim; dir++)
{
/I note that gridbox will be the face-centered one
Box faceBox = fluxes[dir].box();
FORT_UPWIND(CHF_FRA(fluxes[dir]),
CHF_FRA(thisOldSoln),
CHF_REALVECT(m_advectionVel),
CHF_REAL(m_dt),
CHF_REAL(m_dx),
CHF_BOX(faceBox),
CHF_INT(dir));

/I increment flux registers with fluxes
Interval Ulnterval = m_UNew.interval();

if (m_hasFiner)
{
I/l this level's FR goes between this level and the next finer
m_fluxRegister.incrementCoarse(fluxes[dir], m_dt, dit(),
Ulnterval, Ulnterval, dir);

}

if (m_level > 0)

{

LevelFluxRegister& crseFluxReg = coarserLevelPtr->m_fluxRegister;
crseFluxReg.incrementFine(fluxes[dir], m_dt, dit(), Ulnterval,
Ulnterval, dir, Side::Lo);

crseFluxReg.incrementFine(fluxes[dir], m_dt, dit(), Ulnterval,
Ulinterval, dir, Side::Hi);

} /I end loop over directions

/I do flux difference to increment solution
thisNewSoln.copy(thisOldSoln);

for (int dir=0; dir<SpaceDim; dir++)
{
FORT_INCREMENTDIVDIR(CHF_FRA(thisNewSoln),

CHF_FRA(fluxes[dir]),
CHF_BOX(gridBox),
CHF_REAL(mM_dx),
CHF_REAL(m_dt),
CHF_INT(dir));

}

} /I end loop over grid boxes

/[Update the time and store the new timestep
m_time += m_dt;
return m_dt;

void AMRLevelUpwind::postTimeStep()

{

if (m_hasFiner)

{
Il Reflux
Real scale = -1.0/m_dx;
m_fluxRegister.reflux(m_UNew,scale);
/Il Average from finer level data
AMRLevelUpwind* finerLevelPtr = getFinerLevel();
LevelData<FArrayBox>& fineU = finerLevelPtr->m_UNew;
finerLevelPtr->m_coarseAverage.averageToCoarse(m_UNew,

fineV);
}

Layer 4: AMR Applications

¢ A general driver for an unsplit second-order Godunov method for hyperbolic
conservation laws. User provides physics-dependent components (characteristic
analysis, Riemann solver).

e Level solvers, AMR multigrid solvers for Poisson, Helmholtz equations.

e Incompressible Navier-Stokes solver using projection method. Includes
projection operators for single level, AMR hierarchy. Advection-diffusion
solvers.

e Wave equation solver.

e Volume-of-fluid algorithm fluid-solid interactions.

AMR Utility Layer
e API for HDF51/0.

e Interoperability tools. We are developing a framework-neutral representation
for pointers to AMR data, using opaque handles. This will allow us to wrap
Chombo classes with a C interface and call them from other AMR applications.

e Chombo Fortran - a macro package for writing dimension-independent
Fortran and managing the Fortran / C interface.

e ParmParse class from BoxLib for handling input files.

e Visualization and analysis tools (ChomboVis).

Elliptic Equations
AMR elliptic solver — used as standalone code (AMRPoisson) or as solver library
(AMRElliptic: AMRSolver class)

e Implements a multigrid solver for an AMR hierarchy of refined grids.

e Uses multilevel discretizations of the elliptic operators to maintain accuracy
in the presence of coarse-fine interfaces.

ChomboVis Interactive Visualization and Analysis Tools

o “AMR-aware”

— Block-structured representation of the data leads to efficiency.
— Useful as a debugging tool (callable from debuggers (gdb))
e Visualization tools based on VTK, a open-source visualization library.

e Implementation in C++ and Python

— GUI interface for interactive visualization

— Command-line python interface to visualization and analysis tools, batch
processing capability — goal is a full analysis tool.

e Interface to HDF5 I/0O along with C API provides access to broad range of
AMR users. (“Framework-neutral”)

Chombo, ChomboVis available from the ANAG website:
e http://seesar.lbl.gov/ANAG/software.html
e Also available on joshuatree.ipam.ucla.gov (/usr/local/chombo)

e Chombo design document available on joshuatree in
/usr /local/chombo/chomboDesign.ps

Acknowledgements
DOE Applied Mathematical Sciences Program
DOE HPCC Program

DOE SciDAC Program
NASA Earth and Space Sciences Computational Technologies Program

