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BISICLES - Goal

Goal: Build a parallel, adaptive ice-sheet model

= |ocalized regions where high resolution needed to accurately resolve ice-sheet
dynamics (500 m or better at grounding lines)

Large regions where such high resolution is unnecessary (e.g. East Antarctica)
Problem is well-suited for adaptive mesh refinement (AMR)

Want good parallel efficiency
Need good solver performance

Much higher resolution (1
km versus 5 km) required
in regions of high velocity
(yellow - green).
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BISICLES - Approaches

O Develop an efficient parallel implementation of Glimmer-CISM by

= Incorporating structured-grid AMR using the Chombo framework to increase
resolution in regions where changes are more rapid,

= Exploring new discretizations and formulations where appropriate (L1L2)
= Improving performance and convergence of linear and nonlinear solvers, and
= Deploying auto-tuning techniques

to improve performance of key

computational kernels.
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Block-Structured Local Refinement

Q Refined regions are organized into rectangular
patches. 1.0t
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O Refinement in time as well as in space for

time-dependent problems. ZZ

Q Algorithmic advantages: |

= Build on mature structured-grid discretization ool

methods. 04}

= Low overhead due to irregular data structures,  .oz|
relative to single structured-grid algorithm. Y apl
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BISICLES Project Outline

a Joint work involving LBNL and LANL

= LBNL: Esmond Ng (PIl), Dan Martin (AMR), Woo-Sun Yang (Performance
Optimization), Sam Williams (Autotuning)

= LANL: Bill Lipscomb (co-Pl), Doug Ranken (software support)

O Collaboration with Tony Payne (one of the original authors of Glimmer)
and Stephen Cornford (Univ of Bristol, UK)

O Build AMR implementation of Glimmer-CISM

O Extensions to existing Chombo infrastructure added as needed

O Autotuning techniques deployed as components are developed

Q Linear/nonlinear solver improvements

Q Coupling with CESM using existing Glimmer-CISM interface and by

developing new interfaces as needed
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Models and Approximations

QO Full-Stokes

= Best fidelity to ice sheet dynamics
= Computationally expensive (full 3D coupled nonlinear elliptic equations)

Q Approximate Stokes

= Use scaling arguments to produce simpler set of equations

= Common expansion is in ratio of vertical to horizontal length scales (¢ = %

= E.g. Blatter-Pattyn (most common “higher-order” model), accurate to O(&?)
= Still 3D, but solve simplified elliptic system (e.g. 2 coupled equations)

Q Depth-integrated

= Special case of approximate Stokes with 2D equation set (“Shelfy-stream”)
» Easiest to work with computationally
= Generally less accurate
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“L1L2” Model (Schoof and Hindmarsh, 2010)

Q Asymptotic expansion in 2 flow parameters:

" € -- ratio of length scales %
® ) - ratio of shear to normal stresses

[Tshear]

[Tnormal]

 Large A: shear-dominated flow
« Small A: sliding-dominated flow
O Blatter-Pattyn approximates full-Stokes to 0(&?) for all A regimes

QO  Asymptotic expansion: (e.g. u(x,z) = ug + cu; + 0(&2) )
» | eading order velocity term: uy, = uy(x) (no vertical dependence)

= Don’t need shear stresses to 0(e%) to compute velocity to 0(&?)
= Provides basis for depth-integrated approach
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“L1L2” Model (schoof and Hindmarsh, 2010), cont.

Q Use this result to construct a computationally efficient scheme:

1. Approximate constitutive relation relating grad(u) and stress field T with
one relating grad(ul|,=p), vertical shear stresses t,, and t,., given by the
SIA / lubrication approximation and other components t,.,(x,y, z),

Ty (X,Y,2), etC

2. leads to an effective viscosity u(x,y, z) which depends only on grad(ul,-p)
and grad(z,), ice thickness, etc

3. Momentum equation can then be integrated vertically, giving a nonlinear,
2D, elliptic equation for u|,—p(x,y)

4. u(x,v,z) can be reconstructed from u|,-,(x,y)
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“L1L2” Model (schoof and Hindmarsh, 2010), cont.

a Similar formal accuracy to Blatter-Pattyn 0 (&%)
= Recovers proper fast- and slow-sliding limits:
* SIA (1« A<¢ /n)-- accurate to 0(e2A™2)
« SSA (¢ <1<1) - accurate to 0(&?)

O Computationally much less expensive -- enables fully 2D
vertically integrated discretizations.
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Discretizations

O Baseline model is the one used in
Glimmer-CISM:

= Logically-rectangular grid, obtained
from a time-dependent uniform

mapping.
= 2D equation for ice thickness, coupled with ﬁ —b—-—V--Hi{

2D steady elliptic equation for the horizontal ot

velocity components. The vertical velocity is

obtained from the assumption of

incompressibility. ° ﬂ _ £ VT -u-VT + 9 _ Wﬁ
= Advection-diffusion equation for temperature. & pc pC 0L

O Use of Finite-volume discretizations (vs. Finite-difference discretizations)
simplifies implementation of local refinement.

QO Software implementation based on constructing and extending existing solvers
using the Chombo libraries.
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BISICLES results - Grounding line study

O Bedrock topography based on Katz and 400
Worster (2010) -

QO Evolve initially uniform-thickness ice to__
=
steady state < 200

Repeatedly add refinement and evolve ¢
to steady state

U

. . . 0
O G.L. advances with finer resolution .
O Appear to need better than 1 km 400
~ 5000 h
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BISICLES -- Scaling

Initial tests show good strong scaling to at least 128 processors for nonlinear
velocity solve (L1L2 approximation):

Nonlinear velocity solve scaling
=
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Nonlinear Solver Improvements

O Most computational effort spent in nonlinear ice
velocity solve.
A Picard iteration:
* Robust
« Simple to implement
« Slow (but steady) convergence
 Jacobian-free Newton-Krylov (JFNK):
* More complex to implement
« Works best with decent initial guess
« Rapid convergence
« Well-suited for Chombo AMR elliptic solvers
 Approach - use Picard iteration initially, then switch to
JFNK when convergence slows
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Nonlinear Solver Improvements (cont)

Nonlinear Solver Convergence

10000 — JFNK
= Picard
5 100
2 1
q
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Nonlinear solver iteration
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Interface with Glimmer-CISM

a Glimmer-CISM has coupler to CESM, additional physics
» Well-documented and widely accepted

A Our approach - couple to Glimmer-CISM code as an
alternate “dynamical core”

= Allows leveraging existing capabilities
» Use the same coupler to CESM

= BISICLES code sets up within Glimmer-CISM and maintains
its own storage, etc.

= Communicates through defined interface layer
» |nstant access to a wide variety of test problems

» Interface development almost complete
= Part of larger alternative “dycore” discussion for Glimmer-CISM
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“Hump” test problem

O Standard test problem -- isolated “blob” of ice on level
ground
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Greenland test problem

Q Problem setup from Steve Price

(LANL) e R L
O Need to process initial condition BN e T
somewhat in order for solver to | =H , ]
converge (still work in progress) . T et i
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Antarctica

Uses new “model-friendly” problem setup
(Le Brocq, Payne, Vieli (2010) )
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Antarctica, cont

« 10 km base mesh with 2 levels of refinement (5 km, 2.5 km)
« base level (10 km): 258,048 cells (100% of domain)
« level 1 (5 km): 431,360 zones (41.8% of domain)
... * Level2 (2.5 km): 728,832 cells (17.7% of domain)
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Parallel scaling, Antarctica benchmark
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BISICLES - Next steps

More work with nonlinear velocity solve.

Semi-implicit time-discretization for stability, accuracy.
Non-isothermal capability

Finish coupling with existing Glimmer-CISM code
Performance optimization and autotuning.

Begin work on full 3D velocity solve.

Refinement in time?
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