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BISICLES - Goal 

Goal: Build a parallel, adaptive ice-sheet model 

 Localized regions where high resolution needed to accurately resolve ice-sheet 

dynamics (500 m or better at grounding lines) 

 Large regions where such high resolution is unnecessary (e.g. East Antarctica) 

 Problem is well-suited for adaptive mesh refinement (AMR) 

 Want good parallel efficiency 

 Need good solver performance 

 

 

 

 Much higher resolution (1 

km versus 5 km) required 

in regions of high velocity 

(yellow  green).  

[Rignot & Thomas, 2002]  



 

 Develop an efficient parallel implementation of Glimmer-CISM by 
 

 Incorporating structured-grid AMR using the Chombo framework to increase 

resolution in regions where changes are more rapid, 

 Exploring new discretizations and formulations where appropriate (L1L2) 

 Improving performance and convergence of linear and nonlinear solvers, and 

 Deploying auto-tuning techniques 

to improve performance of key 

computational kernels. 

BISICLES – Approaches 



Block-Structured Local Refinement 

 Refined regions are organized into rectangular 

patches. 

 

 

 

 

 

 

 Refinement in time as well as in space for 

time-dependent problems. 

 Algorithmic advantages: 

 Build on mature structured-grid discretization 

methods. 

 Low overhead due to irregular data structures, 

relative to single structured-grid algorithm. 



BISICLES Project Outline 

 Joint work involving LBNL and LANL 

 LBNL: Esmond Ng (PI), Dan Martin (AMR), Woo-Sun Yang (Performance 

Optimization),  Sam Williams (Autotuning) 

 LANL: Bill Lipscomb (co-PI), Doug Ranken (software support) 

 Collaboration with Tony Payne (one of the original authors of Glimmer) 

and Stephen Cornford (Univ of Bristol, UK) 

 

 Build AMR implementation of Glimmer-CISM 

 Extensions to existing Chombo infrastructure added as needed 

 Autotuning techniques deployed as components are developed 

 Linear/nonlinear solver improvements 

 

 Coupling with CESM using existing Glimmer-CISM interface and by 

developing new interfaces as needed 

 



Models and Approximations  

 Full-Stokes  
 Best fidelity to ice sheet dynamics 

 Computationally expensive (full 3D coupled nonlinear elliptic equations) 

 Approximate Stokes 
 Use scaling arguments to produce simpler set of equations 

 Common expansion is in ratio of vertical to horizontal length scales (𝜀 =  
[ℎ]

[𝑙]
) 

 E.g. Blatter-Pattyn (most common “higher-order” model), accurate to O(𝜀2) 

 Still 3D, but solve simplified elliptic system (e.g. 2 coupled equations)  

 Depth-integrated 
 Special case of approximate Stokes with 2D equation set (“Shelfy-stream”) 

 Easiest to work with computationally 

 Generally less accurate 

 

 

     



“L1L2” Model (Schoof and Hindmarsh, 2010) 

 Asymptotic expansion in 2 flow parameters: 

 e -- ratio of length scales 
ℎ

𝑥
  

l – ratio of shear to normal stresses 
𝜏𝑠ℎ𝑒𝑎𝑟

𝜏𝑛𝑜𝑟𝑚𝑎𝑙
  

• Large l: shear-dominated flow 

• Small l: sliding-dominated flow 

 Blatter-Pattyn approximates full-Stokes to 𝑂 𝜀2  for all l regimes 

 

 Asymptotic expansion: (e.g. 𝑢 𝑥, 𝑧 =  𝑢0 + 𝜀𝑢1 + 𝑂(𝜀2) ) 

 Leading order velocity term:  𝑢0 = 𝑢0(𝑥)  (no vertical dependence) 

 Don’t need shear stresses to 𝑂 𝜀2  to compute velocity to 𝑂 𝜀2  

 Provides basis for depth-integrated approach 

 



“L1L2” Model (Schoof and Hindmarsh, 2010), cont. 

 Use this result to construct a computationally efficient scheme: 

 

1. Approximate constitutive relation relating 𝑔𝑟𝑎𝑑 𝑢  and stress field 𝜏 with 

one relating 𝑔𝑟𝑎𝑑(𝑢 𝑧=𝑏), vertical shear stresses 𝜏𝑥𝑧 and 𝜏𝑥𝑧 given by the 

SIA / lubrication approximation and other components  𝜏𝑥𝑥 𝑥, 𝑦, 𝑧 ,
𝜏𝑥𝑦 𝑥, 𝑦, 𝑧 , etc 

 

2. leads to an effective viscosity 𝜇(𝑥, 𝑦, 𝑧) which depends only on 𝑔𝑟𝑎𝑑(𝑢 𝑧=𝑏) 
and 𝑔𝑟𝑎𝑑 𝑧𝑠 , ice thickness, etc  

 

3. Momentum equation can then be integrated vertically, giving a nonlinear, 

2D, elliptic equation for 𝑢 𝑧=𝑏(𝑥, 𝑦)  

 

4.  𝑢(𝑥, 𝑦, 𝑧) can be reconstructed from 𝑢 𝑧=𝑏(𝑥, 𝑦) 

 

 



“L1L2” Model (Schoof and Hindmarsh, 2010), cont. 

 Similar formal accuracy to Blatter-Pattyn 𝑂(𝜀2) 

 Recovers proper fast- and slow-sliding limits: 

• SIA   (1 ≪ 𝜆 ≤ 𝜀
−1

𝑛 ) --  accurate to 𝑂(𝜀2𝜆𝑛−2) 

• SSA  (𝜀 ≤ 𝜆 ≤ 1) – accurate to 𝑂(𝜀2) 
 

 Computationally much less expensive -- enables fully 2D 

vertically integrated discretizations. 
 



Discretizations 

 Baseline model is the one used in  

Glimmer-CISM: 

 Logically-rectangular grid, obtained 

from a time-dependent uniform 

mapping. 

 2D equation for ice thickness, coupled with 

2D steady elliptic equation for the horizontal 

velocity components. The vertical velocity is 

obtained from the assumption of 

incompressibility. 

 Advection-diffusion equation for temperature. 
 

 Use of Finite-volume discretizations (vs. Finite-difference discretizations) 

simplifies implementation of local refinement. 

 Software implementation based on constructing and extending existing solvers 

using the Chombo libraries. 

 

 

  

 H

t
 b    Hu

   

T

t


k

c
2T  u T 



c
 w

T

 z



BISICLES results – Grounding line study 

 Bedrock topography based on Katz and 

Worster (2010) 

 Evolve initially uniform-thickness ice to 

steady state 

 Repeatedly add refinement and evolve 

to steady state 

 G.L. advances with finer resolution 

 Appear to need better than 1 km 

 



BISICLES -- Scaling 

Initial tests show good strong scaling to at least 128 processors for nonlinear 

velocity solve (L1L2 approximation): 

 

 



Nonlinear Solver Improvements 

 Most computational effort spent in nonlinear ice 

velocity solve. 

 Picard iteration:  

• Robust 

• Simple to implement 

• Slow (but steady) convergence 

 Jacobian-free Newton-Krylov (JFNK): 

• More complex to implement 

• Works best with decent initial guess 

• Rapid convergence 

• Well-suited for Chombo AMR elliptic solvers 

  Approach – use Picard iteration initially, then switch to 

JFNK when convergence slows 

 

 

 

 

 

 



Nonlinear Solver Improvements (cont) 



Interface with Glimmer-CISM  

 Glimmer-CISM has coupler to CESM, additional physics 

 Well-documented and widely accepted 

 Our approach – couple to Glimmer-CISM code as an 

alternate “dynamical core” 

 Allows leveraging existing capabilities  

 Use the same coupler to CESM 

 BISICLES code sets up within Glimmer-CISM and maintains 

its own storage, etc. 

 Communicates through defined interface layer 

 Instant access to a wide variety of test problems 

 Interface development almost complete  

 Part of larger alternative “dycore” discussion for Glimmer-CISM 



“Hump” test problem  

 Standard test problem -- isolated “blob” of ice on level 

ground 



Greenland test problem 

 Problem setup from Steve Price 

(LANL) 

 Need to process initial condition 

somewhat in order for solver to 

converge (still work in progress) 

 

 

 



Antarctica 

Uses new “model-friendly” problem setup   

(Le Brocq, Payne, Vieli (2010) ) 



Antarctica, cont   

• 10 km base mesh with 2 levels of refinement (5 km, 2.5 km) 

• base level (10 km): 258,048 cells (100% of domain) 

• level 1 (5 km):  431,360 zones (41.8% of domain) 

• Level 2 (2.5 km): 728,832 cells (17.7% of domain) 

 

 

 

 

 

 



Parallel scaling, Antarctica benchmark 



BISICLES – Next steps 

 More work with nonlinear velocity solve. 

 Semi-implicit time-discretization for stability, accuracy. 

 Non-isothermal capability 

 Finish coupling with existing Glimmer-CISM code   

 Performance optimization and autotuning.    

 Begin work on full 3D velocity solve. 

 Refinement in time? 


