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Abstract

New iterative methods for solving linear equations are presented that are easy
to use, generalize good existing methods, and appear to be faster. The new algo-
rithms mix two kinds of linear recurrence formulas. Older methods have either high
order recurrence formulas with scalars for coefficients, as in truncated orthomin, or
have 1st order recurrence formulas with matrix polynomials for coefficients, as in
restarted gcr/gmres. The new methods include both: high order recurrence for-
mulas and matrix polynomials for coefficients. These methods provide a trade-off
between recurrence order and polynomial degree that can be exploited to achieve
greater efficiency. Convergence results are obtained for both constant coefficient
and varying coefficient methods.

* Invited for publication by SIAM Journal on Matrix Analysis and Applications.
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1. Introduction

This paper develops a new class of iterative methods for solving linear equations.
The new algorithms are easy to use, they generalize good existing methods, and
they appear to be faster.

The new class of algorithms combines the essential features of several methods,
in the following way. When many known algorithms are defined very simply, their
sequences of approximate solutions can be seen to satisfy recurrence formulas of
two types. Either the recurrence formulas have high orders and scalar coefficients,
as in truncated orthomin, or the recurrence formulas have order 1 and polynomials
of matrices for coefficients, as in restarted ger/gmres. The new methods are the
generalization to formulas that mix the two types of recurrences.

Methods in the new class build solutions from linear combinations of vectors
using operators for coeflicients, that is, using polynomials of matrices. The solu-
tion sequences therefore are vector linear recurrences whose coefficients are linear
transformations, whence the name operator coefficient methods. The choice of co-
efficients leads to many, mostly unexplored variations.

A convenient, and in older methods, a frequent choice of coefficients repetitively
solves a simple minimization problem. A new convergence result proves this choice
of coefficients often results in convergence and establishes upper bounds on the
convergence rates. An examination of the parameters that govern the convergence
rates and some numerical experiments suggest that the new methods are faster than
those currently in use. Moreover, it is suggested that both old and new algorithms
may be better implemented by means of well-established, least-squares procedures.

These are the paper’s major results. First, a simple characterization of iter-
ative methods is proposed that unifies many algorithms. Similar descriptions are
known for some algorithms, but they have not been systematically applied to others.
Second, a spectrum of new iterative methods is found to lie between those of high
recurrence order such as truncated orthomin, and those of high polynomial degree
such as restarted ger/gmres. Third, many of the algorithms are observed to have
identical convergence rates. For the same convergence rate, there results a trade-off
between degree and order that can be exploited to optimize efficiency. Fourth, new
convergence results are proved for both constant coefficient and varying coefficient
methods.

The paper’s organization follows the steps which led to discovery of the new
methods. First, iterative algorithms are surveyed from the historical point of view.
Even those familiar with the subject may find this survey interesting. Then, some
algorithms are restated in a very simple form. It is suggested this form has peda-
gogical and practical advantages. Two new generalizations come from it. One is a
further simplification to a new class of inhomogeneous methods. Their convergence
cannot be explained by existing analytical tools, nor is it analyzed here. The second
and more important generalization is to operator coefficient methods. These have
both homogeneous and inhomogeneous forms. A straightforward implementation
for one choice of operator coefficients is proposed, and sufficient conditions for con-
vergence are found. Finally, necessary and sufficient conditions for convergence of
constant coefficient methods are found. To improve readability, appendices contain
the proofs of theorems and descriptions of numerical experiments.

Chronopoulos and Gear [5] [6] [8] have been led by other considerations to
derive some algorithms in the new class of methods, and their work-in-progress
examines more [7]. Their work should be consulted for additional insights.



2. Survey

This section surveys the iterative methods to be analyzed in the sequel. The survey
is mostly historical and phenomenological, with several omissions and some rear-
rangement. Those who expect to read the paper in one sitting or who are familiar
with the subject may prefer to begin at Section 3 and to consult this section as
needed.

Iterative methods are prescriptions for building sequences zg 2, z5 ... Zy, ...
that converge to the solution of Az = y. If the prescriptions differ but the sequences
are the same then the methods are the same, so some prescriptions might be better
than others for the same method. The word prescription is new in this context.

What appears to be the natural progression of ideas for iterative algorithms
involves the manner of choosing various coefficients and parameters to build the
sequences. The oldest iterative methods are incomplete because their parameters
- must be selected from ancillary information. Algorithms in the second phase of
development make automatic choices that are globally correct in some sense for
some matrices. Methods in the third phase choose coefficients that are suboptimal
but serviceable for more matrices.

The survey is bounded as follows. The first limitation is to polynomial meth-
ods. Each term of the sequence equals a linear combination of other vectors with
coefficients that are polynomials of A. The second limitation is to polynomials only
of A. If preconditioners are used, then A must be the result of any preconditioning
matrix multiplications. The third limitation is to amounts of space and time per
algorithm step limited independent of the step number. This means not all the pre-
ceding solutions, residuals, or whatever are available to build the next approximate
solution.

The following notational conventions are used throughout. The exact solution
of Az = y is z,.. The error in z, is e, = z, — £,. The residual of z, is r, =
y — Az,. Note that Ae, = r,. Symbols with negative subscripts equal zero, and
-matrix-vector norms are the 2-norm, unless stated otherwise. Complex numbers
are assumed. The Hermitian part of A is (A* + A)/2. The set of eigenvalues of the
matrix H is A\(H).

2a. Incompletely Specified Methods

Richardson’s 1st Order Method, 1910. Iterate from zg.

Zntl = QnTp + Zn

Richardson’s paper [43] makes interesting reading from the turn of the century.
Residual polynomials

n

Pa(X) =] (1 - ;%)

j=1

have been used to understand this and other methods because they provide formulas
for the residuals and the errors.

rn = P,(A)rp en = Pp(A)eo

The many papers such as [41] on the proper choice of coeficients are outside the
scope of this survey. If all the coefficients ag, a1, s, ... equal the same a, then the

8



method converges for all y and zq exactly when all the eigenvalues of A lie strictly
inside the circle through 0 around 1/« in the complex plane.

The history of iterative methods swings like a pendulum between two extremes
of fashion. On the one side are the basic iterations surveyed here, on the other
side are things now called preconditioners. Preconditioning replaces Az = y by
BAr = By where B is an approximate inverse for A. The pendulum started with
Richardson’s 1st order method, and the first reversal probably occurred when inter-
est reverted to relaxation schemes, some of which are much older if their appellations
can be believed.

The classic preconditioners were developed for use with the simplest 1st order
method, for ap, = 1 and 2,41 = 7, + 2,. They split the matrix A= L+ D+ U
into its diagonal and triangular parts, and choose B as follows.

D=!  Jacobi, 1845
(D+L)™! Gauss-Seidel, 1873
(1D +L)~' SOR, Successive Overrelaxation, 1950
2=¢(1D 4+ U)~'D(:D+L)-! SSOR, Symmetric SOR, 1950

G. E. Forsythe said Gauss-Seidel was not known to Gauss and not recommended
by Seidel [30], so the very old references in this and [48] [53] [62] must be consulted
to see how preconditioners predating Richardson’s method, or at least Richardson’s
description of his method, were conceived. These and other relaxation methods
are now viewed as a class of preconditioners. SOR was invented independently
by Frankel [21] and Young [59] [60], and SSOR by Aitken [1]. In the 1950’s and
60’s many matrices and preconditioners were found that make Richardson’s method
converge. They are described by Golub [22], Golub and Varga [23] [24], Varga [53],
Young [61] and many others.

2nd Order Method, (1950) 1958. Iterate from zg
Tn41 = QnTn + BnZn + Ynn-1
in which By =1 and B, + v, = 1.

Frankel [21] invented this method in 1950 and named it after Richardson. He
was deferential to a fault because in the same paper he invented SOR and named
it after Liebmann. Frankel and many others omit the name of the third coefficient.
Stiefel [50] makes v, = 1— 3, appear to be a natural consequence of normalization.
The conditions By = 1 and B, + v, = 1 enable the following analysis. With them
the familiar residual polynomials exist

Tn = Pa(A)ro en = Pa(A)ey
and can be built from
Po(X)=1  Puja(X) = =an X Po(X) + Bn Pa(X) + n Pao1(X)
just like normalized orthogonal polynomials. Stiefel may have been the first to

describe the method’s possibilities when he suggested consulting the theory of or-
thogonal polynomials to find appropriate coefficients.



Chebyshev Iteration, (1957) 1975. Iterate from zg
Tn+l = QnTn + Bnzn + (1 - ,Bn)xn—l
in which

ap=1/d Bo=1

o = 2T,(d/¢) _ 2dT,(d/c)
"7 eThta(dfe) "~ cThta(d/e)

Bn

where T, is the n'® Chebyshev polynomial of the first kind.

The Chebyshev iteration is the 2nd order method with residual polynomials

7.(<55)

r(5)

Varga [52] derived the method differently by building rapidly converging sequences
from more slowly converging ones. Manteuffel [35] [36] [37] extended the method
beyond symmetric positive definite matrices and coined the present name. The
iteration converges for all y and z, exactly when all the eigenvalues of A lie strictly
inside the ellipse through 0 with foci d & ¢ in the complex plane.

P(X)=

Stationary 2nd Order Method, 1982. Iterate from zo and z_;.

Tnt1 = arp + Bz, + (1 = Bzn—

Iterative methods and linear recurrences are stationary when the coefficients
are independent of n. The handful of papers on the stationary 2nd order method
seek coefficients that optimize convergence for a given matrix. The answer to the
simpler inverse question—which matrices converge for a given pair of coefficients?—
can be obtained from [38] and a few napkins. Convergence occurs for all y and z
exactly when all the eigenvalues of A lie strictly inside the ellipse through 0 with
foci '

Moreover, the Chebyshev iteration’s coefficients for these foci converge to the sta-
tionary coeflicients.
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2b. Completely Specified, Terminating Methods

By the time 2nd order methods were completely understood, the pendulum had
already swung toward iterations with completely specified coefficients. The next
method is the namesake for the entire class.

Conjugate Gradient Algorithm, (1952) 1971. Iterate from zg.

po=ra— Dot L
T ppo1*Apa-i
Pn*Tn
T =I
n+1 n+ on* Ay, Pn

Hestenes and Stiefel [28] drew this method from optimization theory. If A
is Hermitian and positive definite, then the method searches from z, along the
direction vector py, for the z,4; that minimizes

”eﬂ+1"-4 =V ent1*Aeny .

It happens that the p’s are A-orthogonal, the r’s are orthogonal, and zn41 is the
global minimizer within

zo+span {po p1 P2 ... Pn}=
zo+span {rg r Ty ... P} =
Zp + span {ro Arg A%rg ... A”ro}.

When the subspaces stop growing the last iterate is the exact solution. Hestenes
[29] derives many algebraic identities including the few needed to establish global
optimality and alternate expressions for the coefficients. Golub and O’Leary [25)
provide an excellent annotated bibliography for the huge corpus.

Elaborate formulas were a disadvantage on early computers so for many years
the conjugate gradient algorithm was seen as a freakish alternative to Gaussian
elimination [30]. By 1971 technological improvements enabled Reid [42] to view
the algorithm as an iterative method and to obtain acceptable solutions after com-
paratively few steps. A curious tribute to Reid is that his paper is no longer read
because his ideas are so completely accepted.

The matrices for which the conjugate gradient iteration finds an exact solution
for all y and z are the terminating class. This terminology is new. Preconditioning
by A* yields A*Az = A*y with A*A in the terminating class but with squared
condition number. Faber and Manteuffel [17] [18] [19] answered a challenge of
G. H. Golub and found the terminating classes for many polynomial methods based
on A alone. The Russian literature contains a related announcement at about
the same time [55]. Unfortunately, all the classes are severely restricted. If the
Hermitian part of A is positive definite, then Joubert and Young [32] show from the
work of Faber and Manteuffel that the conjugate gradient algorithm terminates for
all y and z¢ exactly when either A* = P(A) where P(X) is a polynomial of degree
at most 1, or P(A) = 0 where P(X) is a nonzero polynomial of degree at most 2.
The direction vectors’ A-orthogonality must be reinterpreted in the non-Hermitian
case.

11



Conjugate Residual Algorithm, (1955) 1970. Iterate from zo.

Pn-1"A%Ary,

This algorithm has an interesting genealogy. Hestenes and Stiefel allude to it
[28], but Stiefel describes it fully without naming it [49], and Luenberger finally
names it when he reinvents it [33]. The algorithm is one of many variations of the
conjugate gradient algorithm with similar properties. This one uses a different inner
product. If A is Hermitian and positive definite, then the p’s are A* A-orthogonal,
the r’s are A-orthogonal, and 2,1 is the global minimizer of lIn41]| within

zo+span {po p1 P2 ... pp}=
zo+span {ro ry rp ... T} =
Zg + span {ro Arg A%ry ... A“ro}.

Remember the convention that unspecified norms are the 2-norm. Joubert and
Young [32] show from the work of Faber and Manteuffel [17] [18] [19] that among
matrices whose Hermitian part is positive definite, the conjugate residual algorithm
has the same terminating class as the conjugate gradient algorithm.

Alternate Conjugate Residual Algorithm, 1951. Iterate from z,

Pn-1*A*A%p,_; _ Pn_2*A*A%p,_;

= Ap,_1 — _
Dn Pn—1 Pn1"A"Apn_1 Pn-1 Pn-z"‘_A*Apn..z

n-2

but choose po as in the original conjugate residual algorithm.

This method has been invented by many, but Forsythe, Hestenes and Rosser
[20] appear to be the first [11] [25]. It is the conjugate residual method with a dif-
ferent prescription whose terminating class is larger. Faber and Manteuffel [18] [19]
show the method converges for all y and z( exactly when either A* = P(A) where
P(X) is a polynomial of degree at most 1, or P(4) = 0 where P(X) is a nonzero
polynomial of degree at most 3. These are weaker conditions than for the conjugate
residual algorithm because 3 replaces 2, and more importantly, the Hermitian part
of A need not be positive definite. And yet the p’s are A* A-orthogonal, and z,4;
is the global minimizer of ||rn41|| within :

zo +span {po p1 p2 ... pn} |
= zo +span {ro Arq A?ry ... Aro}

Just like the conjugate residual algorithm.

The relative merits of the two prescriptions are not clear. The original fails for
an indefinite matrix when a direction vector makes no contribution to the solution.

12



In this unlikely event the residuals do not change and the subsequent direction vec-
tors lie within the span of the previous. The alternate version succeeds because
it builds the direction vectors from a self-contained recurrence. In some sense the
alternate prescription is an analytic continuation of the original. But the theoret-
ically more powerful prescription amounts to evaluating the Lanczos recurrence,
which may be more sensitive to rounding errors.

The effects of rounding errors are a major disappointment for all these algo-
rithms. Loss of orthogonality and failure to terminate are the most easily observed
symptoms. The conjugate gradient algorithm should have p;* Ap; = 0 for i # j, but
in practice p;* Ap; /(||p:l| Allp,” 4) grows exponentially with |{ — j|. Figure 1 makes
the more difficult comparison between the numerically computed direction vectors
and those that would be obtained from error-free arithmetic. This data may be the
first of its kind in print. The formulas for the direction vectors evidently are unsta-
ble because they magnify the small perturbations due to rounding error. Figure 2
shows the resulting delayed convergence. Greenbaum has a detailed analysis of the
retarded convergence [27], but no universal, inexpensive cure is known.

Interest in the conjugate gradient algorithm was intense for a time. Many ter-
minating algorithms were proposed with enlarged terminating classes. Generalized .
refers indiscriminately to these methods for which there is no consistent naming
convention. The generalized conjugate gradient algorithm [9] [10] [58] established
the use of very different inner products and to some extent prompted the work of
Faber and Manteuffel. Ashby, Manteuffel and Saylor classify many generalizations
of this kind [3].

Some terminating generalizations of the conjugate gradient algorithm have
mostly theoretically use. The analyses of Faber and Manteuffel and of Joubert
and Young actually proceed by seeking conditions under which the original algo-
rithm is equivalent to a generalized one that uses all the direction vectors to build
the next. The same generalization can be made of the conjugate residual algorithm.

Generalized Conjugate Residual Algorithm, 1982, Iterate from zg.

- Pn-i*A*Ar,

Pt L A
PntA'ry
Tntl = Tp + *A* Ap,, n

Formulas of this kind may be traced to Arnoldi [2], but this algorithm is from
Elman [14] and Eisenstat, Elman and Schultz [13]. Its terminating class includes all
matrices with positive definite Hermitian parts. The method itself is impractical,
and is outside the bounds of the present survey, because all the previous direction
vectors must be saved. It can be made practical either by truncating the sum, or
by restarting the iteration, as follows.

13
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Figure 1. 2-norm relative errors in the computed basis vectors of the
conjugate gradient algorithm for a system of order 100. Appendix 2 and
Section 2b explain the calculations.
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Figure 2. Relative A-norm solution errors for the system of Figure 1.
The upper curve is for single precision and the lower for reorthogonalized
double precision. Appendix 2 and Section 2b explain the calculations.
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2¢. Compiletely Specified, Non-Terminating Methods

Orthomin(m), 1976. Iterate from zy.
“ pn—i*A*Arn

= r, — kL Sttt LA S
pﬂ n p pn_;*A*Apn_,' pﬂ E)

Tpyl = Tp +
Pn

Vinsome [54] invented this truncated algorithm and made non-terminatingor
suboptimal convergence respectable again. Elman [14] and Eisenstat, Elman and
Schultz [13] prove convergence for all y and zy whenever the Hermitian part of A
is posmve definite. Specifically, they prove

min |[A(A* + A
rnt1 || < ||rn|]\/ X )I] < |lra]l-

2[[4] P
They also show each set of m + 1 consecutive direction vectors is A*A-orthogonal.,
and z,4; minimizes ||r,41|| within »

zn_on+span.{pn_m .v+ Pn-2 Pn—1 Pn}-

The notation is rigorously correct because things with negative subscripts vanish
and the wedge in z,_ma0 means the maximum of n — m and 0. It is an open ques-
tion why the suboptimal convergence results ignore m and exclude the Hermitian
indefinite case for which the alternate conjugate residual algorithm has terminating
convergence.

The truncated algorithm is expected to have dependable convergence for many
matrices rather than terminating convergence for a few. As m increases the termi-
nating class grows beyond that of the conjugate: re51dual method, but only through
the addition of matrices having at most m? distinct elgenvalues [18] [19] [32]. Ter-
mination also occurs, of course, for m so impractically large that the method reverts
to the generalized conjugate residual method.

As with the conjugate residual algorithm, there is an alternate version that
generates the direction vectors independently of the residuals. Saad and Schultz
survey many equivalent prescriptions [46]. Saad develops some of these algorithms
himself, and names the class incomplete orthogonalization methods [44]. Jea and
Young [31] also develop a broad class of methods and also provide extensive refer-
ences to other work. In their terminology, the original conjugate residual algorithm
is an orthomin and the alternate is an orthodir, both with m = 1 and with specific
choices for inner products and the like. Faber and Manteuffel [17] [18] [19] actually
treat the alternate prescriptions, but Joubert and Young [32] and Ashby, Manteuffel
and Saylor [3] ca.refully observe the distinction.

Ger(k), Restarted Generalized Conjugate Residual Method, 1979. Iterate
from zg, and for each z,, obtain z,4; by building the sequence

Ty = .’L‘(g) 2:(1) 12(2) ‘e m(k+1) = ZTn41
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by iterating the generalized conjugate residual algorithm from z(g) to
Z(k+1)

i ‘g
N _Pa-))TATATG)
p(J) - 'I'(J) E P(i—l)*A*AP(i_n p(!—l)

PG A'rG)

TG+1) = 2() + pgy A Apg, 7O

in which the subscripts in parentheses indicate dependence on n.

The idea of restarting an algorithm contrasts with truncating in orthomin(m).
It is the theory that jiggling the ignition recharges the battery and may be due
to several people. Luenberger [34] restarts the conjugate gradient algorithm to
circumvent numerical difficulties, while Eisenstat, Elman, Schultz and Sherman
[12] [13] [14] restart the generalized conjugate residual method to conserve memory
space. They show that ger(k) minimizes ||rp41]| within

z, + span {r,, Ar, A?r, ... A"r,,}

and converges when the Hermitian part of A is positive definite.

Like truncated orthomin, restarted ger is expected to have dependable conver-
gence for many matrices rather than terminating convergence for a few. And again
there is an alternate prescription. This one additionally makes the direction vectors
orthogonal with respect to the Euclidean inner product rather than the A* A inner
product.

Gmres(k), Restarted Generalized Minimum Residual Algorithm, 1983. It-
~erate from z, and for each z,, build the orthonormal sequence

Tn
m=P(1) Pi2)y P@E) .- Dk41)

from Arnoldi’s recurrence equations
j
hii+1,5) PG4y = APG) = D hei, ) PG)
i=1

with appropriately chosen h(;, j)’s, and then chose a(jy’s to minimize

I lirnller = [hg, )] i) |

in which ey is the first column of an identity matrix and [h; ;)] is the .
(k + 1) x k matrix of recurrence coefficients, and finally construct

k
Zn+1 = 2+ ) 0() PG
j=1
The subscripts in parentheses indicate dependence on n.

Saad and Schultz [45] [47] developed this most widely used version of restarted
ger. It uses an alternate prescription to generate the normalized direction vectors,

17



with the precise choice of h(; jy’s clear and mercifully omitted. The coefficients
for z,, are selected from the small matrix that describes the action of A on the
orthonormal basis. Nevertheless, gmres(k) minimizes ||r,4;|| within

z, + span {r,, Ar, A%r, ... Ak'lr,,}

Jjust like ger(k—1). Both prescriptions sometimes have difficulty solving the least
squares problem, and other prescriptions have been proposed [56] [57].

Note the multiple names. Ger(k—1) is gmres(k). The first generalizes the
conjugate residual algorithm and the second generalizes the minimum residual al-
gorithm. So there is yet another line of development which leads to the same
methods. But this is too broad a subject for discussion.

3. Simplification

The completely specified algorithms in the survey can be reduced to simpler but
equivalent form. Here, all inessential notation is removed to leave what may be the
vital core. This naive approach leads to useful generalizations in subsequent sec-
tions, and even to useful implementations. The simplified algorithms are strikingly
similar. Each chooses its next solution from a small selection space, and uses a
minimization problem as the selection criterion.

Another form of the conjugate gradient algorithm discards the direction vectors
and reveals it to be a 2nd order method.

Tnyl = Qp?ty + ,ann + (1 - ﬁn)l'n-l

This version has several sources. One builds the coefficients recursively, and is at-
tributed to Engeli, Ginsberg, Rutishauser and Stiefel [16] by [63], and to Rutishauser
alone by [42]. Hestenes [29] cites a form called paratan with a geometric interpre-
tation and explicit coefficient formulas [48].

lIra-1ll*lra|f?
lIra-1l|?(r5 Ara) + [Iral|*(ry, -1 Ara)

a, =

5 o o= [2(r3Arn)
» = TracalFlraArs) + ralE(ra_iAre)

These formulas too can be discarded because theorems say they make ||en41/a
globally minimal, and therefore locally minimal. In this way a simple minimization
criterion concisely replaces many elaborate formulas. This interpretation succinctly
characterizes both the conjugate gradient algorithm and its cousin.

Simplest Conjugate Gradient Algorithm. Iterate from z;.
minimize ||en+1||a over span {r, z, z,-1}

so coefficients of ¢, and z,,_1 sum to 1

Simplest Conjugate Residual Algorithm. Iterate from z;.

minimize ||rp41||2 over span {r, =, zn_1}
so coefficients of z,, and z,_1 sum to 1

18



The starting point for a simpler version of orthomin(m)

= Pn—i*A*Arn

=r, — - P
Pn n 2 Pri* A" Apn_i DPn—i
*A*r
Tat1 = Tn + p':AmA;n "

is the work of Elman [14] and Eisenstat, Elman and Schultz [13]. They show if the
Hermitian part of A is positive definite, then z,4; minimizes ||r4,|| within

ZTn-mao + Span {pn—m v+ Pn=2 Pn-1 Pn}

and the coefficient in the formula for z,4; can’t vanish. The notation is rigorously
correct because things with negative subscripts vanish and the wedge in z,_ma0
means the maximum of n — m and 0. The formula for p, means r, can replace p,
inside the span. The formula for z,41-; means (zn41-j — Zn—;) can replace pn_;.
With these substitutions the affine space becomes

Tpn-mao + Span { (3n+1—m - 1‘n—m) (%-1 - l‘n-z) (zn - -’cn—1) Tn }

from which (2n41-j — n—;) vanishes if n — j < 0. The z-coordinates of each vector
in the span sum to zero, and the affine space adds z,_ma0, so the z-coordinates of
each vector in the affine space sum to 1.

Simplest Orthomin(m). Iterate from g

minimize ||rp41|| over span {r, z, Tn_1 Tn—2 ... Tp_m}

so coefficients of £, Typ_1 Tp-2 ... Tp—m sumtol

This definition of orthomin(m) may be new, but the simplest form of ger(k—1)/
gmres(k) is well known and needs no derivation. Table 1 allows side-by-side com-
parison of the simplest versions of all these methods for the first time.

These versions are proposed as archetypes for study and use. Each prescription
is a simple linear recurrence with coefficients that repetitively solve a simple mini-
mization problem. Confusion and duplication of effort are unlikely because identity
and functionality are clear at a glance. Straightforward solution of the minimization
problems affords easy comparison and substitution of methods.
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Table 1. Simplest prescriptions for the survey’s completely specified algo-
rithms. Section 3 provides further explanation.

conjugate gradient
minimize ||en+1]|a
over span {r, z, Tn-1}
so coeflicients of z,, and z,_; sum to 1.

conjugate residual
minimize ||rp41]2
over span {rn T Tn-1}
so coefficients of z,, and z,_; sum to 1

orthomin(m)
minimize ]|r,,+1||2
over span {r, Tn Tp—1 Tp-2 ... Tpn—m}
so coefficients of z,, ,_1 Tn_2 ... Tp_y; sumto 1

ger(k—1)/gmres(k)
minimize ||r,41]2
over span {z, r, Ar, A%r, ... Ak-lp )
so coefficient of z,, equals 1

4. Inhomogeneous Methods

New methods can be derived by further simplifying the algorithms of Table 1. The
resulting algorithms apparently cannot be analyzed by traditional theory, nor is a
new theory offered here. These algorithms do simplify Section 5’s presentation of
more important generalizations.

A common feature of all the algorithms in Table 1 is the constraint that the
z-coefficients sum to 1. That is, the next solution equals a linear combination of pre-
vious solutions and other things, in which the coefficients of the previous solutions
sum to 1. This constraint is called the consistency condition, but homogeneity con-
dition more accurately describes its use. With it, the formula for the next solution
can be multiplied by A and subtracted from y to make an homogeneous recurrence
for the residuals, and this can be multiplied by A~ to make a similar recurrence for
the errors. If the recurrence formulas are used to produce polynomials rather than
vectors, then all the residuals and errors can be obtained formally, by multiplying
the initial residual and error by these so-called residual polynomials evaluated at
the matrix A.

The entire convergence theory of iterative methods rests on residual polyno-
mials. Convergence to the solution of Az = y depends on both A and y, but the
homogeneity condition allows a separation of variables in which ‘the entries of A
are more prominent than the entries of y. Convergence is equivalent to the resid-
ual polynomials having small values at the matrix eigenvalues. The incompletely
specified algorithms in Section 2a need parameters that make the polynomials small
independent of y. The completely specified algorithms in Sections 2b and 2¢ choose
parameters that make the polynomials small in norms weighted by the entries of y.
In both cases, convergence depends strongly on A and weakly on y.
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When the algorithms are stated so simply as in Table 1, however, there is clearly
no reason to impose homogeneity. It is a theoretical convenience for convergence
analysis that is superfluous to the algorithms. Completely new algorithms can be
derived by removing the constraint. Table 2 presents these even simpler, inhomo-
geneous algorithms. Henceforth, the original algorithms are called homogeneous.

Table 2. Inhomogeneous, simplest prescriptions for the survey’s completely
specified methods. Section 4 provides further explanation.

un-conjugate gradient

minimize ||e,,+1||A
over span {r, z, Z,_;

un-conjugate residual
minimize ||rp41]2
over span {r, z, Zn-1}

un-orthomin(m)
minimize ||rp412
over span {r, Tp Tp_1 Tn-2 ... Tp_m}

un-ger(k—1)/gmres(k)
minimize ||rp412
over span {z,, r, Ar, A?r, ... A¥"1r,}

Figure 3 shows that the new, inhomogeneous methods may converge when the
old, homogeneous methods do not. The selection criteria evidently find smaller
minima when the selection spaces grow by removing the homogeneity constraint.
This explanation is too simple, however, because it does not characterize the new
convergence rate. This difficult question is not addressed here beyond the following
comments. First, terminating algorithms already make globally optimal choices,
so removing the constraint should not change them, at least in exact arithmetic.
Second, if the recurrence coefficients of non-terminating algorithms converge to
constant values, then the recurrence formulas must be homogeneous in the limit.
In particular, algorithms with constant coefficients must be homogeneous.
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mogeneous (solid) gcr(k—1)/gmres(k), k = 1, 2, ..., 10, applied to one
system. The two methods perform alike except for k = 5 when the origi-
nal, homogeneous method stagnates and the new, inhomogeneous method
converges. Appendix 2 and Section 4 explain the calculations.



S. Operator Coefficient Methods

This paper’s major observation is that new iterative methods can be derived by
combining the algorithms of Table 2. The easiest way to join the algorithms is to
amass their selection spaces, as follows.

The basis vectors naturally fit into a tableau. Those of the conjugate gradient
algorithm and the conjugate residual algorithm occupy a corner, those of ortho-
min(m) add a row, and those of ger(k—1)/gmres(k) fill a column.

Tn Tn-1 Tn-2 e Tn—m
Tn

Ar,
Ak-1p

Orthomin(m) apparently gains its advantage over the conjugate residual algorithm
by keeping more old solutions. It is likely the vectors of gcr(k—1)/gmres(k) can be
kept with some advantage too. The tableau does have room for many more.

Tn Tn-1 Tn-2 s Tn-m

Tn Tn-1 Tn-2 s Tn—m

Ar, Arp_1 Arp_o ... Ary_m
Ak=lp ARl AR=lp o L ARp

The remainder of this paper demonstrates that better iterative methods can be cre-
ated by placing some or all of these vectors into the selection spaces. The following
definition of the new methods involves a change of notation because the tableau
loses one column.

Oc(k, m), Operator Coefficient Methods of Degree k and Order m. Begin
from zo and optionally from z_1, £_3, ..., £1_m, and choose z,, to

minimize ||ra|yhatever OF Whatever

from among

Tn-1 Tn-2 ces Ln—-m
Tn—-1 Tn-2 iy Tn—m

span | Ara_y Ara_s ... Arp_m 4
Ab=lp o AR-lp o L AR-lp

\ /

and, in the homogeneous case, choose z, so the z-coefficients sum to 1.

The definition above introduces a name for a generic class of old and new
algorithms. Three aspects need further explanation. First, it isn’t necessary to
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employ all the vectors in the span. Some old algorithms do nét. Second, the
selection criteria is unspecified because there are so many possibilities. Some are
explored in later sections. Third, since the recurrence formula has order m, it is
possible to begin from m initial guesses, zo, z_1, T3, ..., 1_y,. In this case the
operator coefficient method is not a Krylov space method.

Operator coefficient methods include many known iterative algorithms. For
example, ger(k—1)/gmres(k) is an homogeneous oc (k, 1) method minimizing the 2-
norm of the residual. Orthomin(rn) is an homogeneous oc (1, m+1) method that also
minimizes the 2-norm of the residual and has only the latest residual in the selection
space. The conjugate gradient and conjugate residual algorithms are homogeneous
oc(1,2) methods that minimize various norms and also have only the latest residual
in the selection space. It would be interesting to find a polynomial-based iterative
algorithm that is not an operator coefficient method.

Methods that employ the entire (k + 1) x m tableau may greatly reduce the
matrix-vector multiplications needed to solve equations to prescribed accuracy. The
convergence rate of truncated orthomin generally improves as the order, m, in-
creases. Orthomin is a Ist degree method, k = 1, and similar behavior may be ex-
pected for higher degree methods, k > 1. Figure 4 shows convergence significantly
improves by increasing m and fixing k. In this case the matrix-vector multiplica-
tions for each step are independent of m and are identical to those of ger(k—1)/
gmres(k). Thus, convergence quickens by solving larger minimization problems but
by performing the same matrix-vector multiplications per step. Faster convergence
means fewer steps, and fewer matrix-vector multiplications overall. This subject is
discussed again in Section 7.

Reducing matrix-vector multiplications is a significant achievement because
they can account for most of the computational work. When the matrix is randomly
sparse, then matrix-vector multiplications perform random memory accesses which
are comparatively slow. If the matrix is not explicitly known, as in matrix-free
solution of ordinary differential equations [4], then matrix-vector multiplications
require numerical differentiation of functions whose evaluation may be very slow.

Several recurrence formulas are associated with an operator coefficient method.
The selection criterion

minimize |7 || whatever OF Whatever

chooses a coefficient tableau

€o,1) €0,2) -+ Com)
11 €12 - Cm)
€(2,1) €(2,2) s C2,m)
c(krl) C(k’2) e c(k!m)

which produces the next iterate

m k. m
Zn =) e, i)Enmj + D el A ey
i=1

i=1 j=1
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Parenthetical subscripts in this and other formulas indicate dependence on n. The
next residual can be obtained by a similar formula

m k m ]
n = Z €(0,5)n-j — Z Z C(,-,j)A'Tn_j + fn
j=1

i=1j=1
fa=y— f:c(o,j)y
j=1
which can be written as a recurrence formula of order m
™ = Py(A)rn-1+ Pay(A)ra_a + -+ P(m)(A)'I'n-m + fn
whose coefficients are operators, that is, are polynomials of degree k
Piy(X) = eo,) = e, nX = e pX? = -+ = eqr, j X*

evaluated at the matrix A. Whence the name, operator coefficient method of degree
k and order m. If ¢0,1) + €(0,2) + --- + ¢o,m) = 1, then the f,’s vanish and the
residuals satisfy homogeneous recurrence formulas. Whence homogeneous and in-
homogeneous methods. In the homogeneous case, the residuals can be expressed
succinctly in terms of the initial residuals

Ty = Pn,l (A)TQ -+ Pnyg(A)'I'_l =+ Pn’3(A)7'_2 + -4 Pﬂ’m (A)T‘l_m
by means of residual polynomials, P, ;(X), generated from the recurrence formulas
Pr,j = PayPa-1,j + P2yPa-2,j + -+ Pim)Pn-m,

with initial values P,_; ; = 1 and others zero. This representation for ry; IS numer-
ically correct, however, only if the recurrence formulas are stable when X = A.
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6. Implementations

The implementation of inhomogeneous operator coefficient methods that minimize
the 2-norm of the residual is considered here. This section has two parts. The
first analyzes implementations of older methods, the second describes a reasonable
implementation for all oc (k,m) methods. Those who are interested in the new
methods may prefer to read the notation below and to begin at Section 6b.

Inhomogeneous oc (k,m) methods that minimize the 2-norm of the residual
perform the following task at step n. They choose z, = V,c,,, where ¢, solves the
least squares problem

min ||y — AVaenll2,

and where V,;’s columns are a basis for the selection space. The natural basis for
the full-tableau method is the following.

Tn-1 In-2 T Tn-m
Tn—-1 Tn-2 s Tn—m

span {V,} = span
Ak—lrn—l Ak_lr,,_z . Ak-—lrn_m

Any implementation makes three choices. The first is the basis for the selection
space. This basis becomes the columns of V,. The second choice is the basis for the
least squares problem. This might be the columns of AV,,. The third choice is the
process to solve the least squares problem. All the choices affect both numerical
accuracy and computational efficiency. The bases might overlap to conserve storage,
for example, or they might facilitate the solution process to conserve time. The
chief numerical considerations are the accuracy of the bases and the accuracy of
the least squares solution. A comparative analysis of all the possibilities is beyond
the scope of this paper. Ashby, Manteuffel and Saylor [3], Saad and Schultz [46],
Walker [56] [57] and references therein should be consulted for more implementation
ideas.

6a. Some Existing Implementations

This section analyzes implementations of known methods. It reverses Section 3’s
simplification process, and rebuilds the algorithms with explicit justification for
each implementation detail.

Like more general operator coefficient methods, ger(k—1) and gmres(k) solve a
least squares problem, but their selection space is smaller and affine. They choose
ZTn = Zn—1+ Vycn, where ¢, solves

min ||rp—1 — AVpenll2,

and where
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The ger implementation of ger(k—1)/gmres(k) maintains two separate bases. It
uses AV, for the least squares basis, and it chooses V;, to be A* A-orthogonal. Evalu-
ation of the inner products during the orthogonalization process requires either that
the columns of AV, be saved, or that additional matrix-vector multiplications be
performed. Since AV, is Euclidean-orthogonal, the normal equations are diagonal
and are easily solved. However, normal equations may solve least squares problems
with accuracy less than best.

The gmres version of ger(k—1)/gmres(k) may be the most efficient for this
method. It chooses an Euclidean-orthonormal basis for span {V,,} that becomes an
orthonormal basis for span {V,}+ span {AV,} by the inclusion of one more vector.
That is, AV, = W, H, where W, has the columns of V, plus one, and where the
small matrix H, is constructed along with the basis. H, represents A under an
orthonormal change of basis. If the change of basis can be computed accurately,
then H, can be used to solve the least squares problem accurately.

It is not clear whether so efficient an implementation is possible for more general
operator coefficient methods. The oc (k, 1) methods have the advantage of simplicity
because their selection spaces involve a single group of nested Krylov spaces.

span {rn_1} = Ko C Ky C-+- C Kx_1 =span {rn_y Arp_y ... A¥'r,_;}
More general oc(k, m) methods have several Krylov spaces and so may not attain

the efficiencies of the 1st order, m = 1, methods.

The usual practice with oc(k, 1) methods is to recursively build orthogonal
bases for the nested Krylov spaces,

Kjy1=span {po p1 ... p; pj+1} =span {K; pjn1},

in which p;4; is orthogonal to K;. Restarted ger employs A* A orthogonality, while
restarted gmres chooses Euclidean orthogonality. Orthogonality is desired for two
reasons. It is generally believed orthogonal bases provide better numerical repre-
sentations for their spans, moreover, orthogonality can help solve the least squares
problem.

The experience with orthomin(m—1), an homogeneous oc (1, m) method, sug-
gests orthogonality has a third use. It may provide efficient implementations of high
order, m > 1, methods. Like ger/gmres, orthomin(m—1) chooses z,, = zp—1 + Vyien
where c,, solves

min ||rp—1 — AVyeall2,

but in this case
span {V,} = span { Tn-1 (Zn-1=2n-2) ... (Ta—(m-1)— Tn-m) } .

Orthomin(m—1) represents this selection space by an inventory of A* A-orthogonal
basis vectors,

Vo= [pn—l Pn-2 --- pn—m]-

Each step maintains the basis by discarding the oldest vector and inserting the
residual’s component orthogonal to the others. As with ger, A* A-orthogonality
results in diagonal normal equations for the least squares problem. The solution

28



update involves only the newest basis vector because previous steps account for the
others. In this way, each basis vector spans exactly the difference between a pair of
successive approximate solutions.

Some algorithms of Chronopoulos and Gear [5] [6] [7] [8] appear to be more
general oc (k, m) methods that follow the approach taken by truncated orthomin.
They build the natural basis for a Krylov space of low dimension, say k, and then
perform an orthogonalization step to enforce A*A-orthogonality among a number
of such spaces, say m. Like orthomin, the difference between a pair of successive
approximate solutions lies in a space of low dimension, in this case k, but in the
absence of arithmetic error the new approximate solution is the best in a larger
space. An analysis like the one in Section 3 for orthomin would be needed to
identify the selection spaces in terms of the natural oc (k,m) basis.

All implementations that rely on recursively produced, orthogonal bases can
be expected to share the failing of the original conjugate gradient algorithm. The
vectors are not orthogonal in practice and, as shown by Figure 1 for the conjugate
gradient method, they can be quite dlﬁ'erent from the intended vectors. The loss of
orthogonality in the basis is readily detected, and obviously affects the accuracy of
the least squares solutions. The loss of accuracy in the basis vectors is difficult to
detect, but surely affects the essential character of the approximations. Elaborate
means such as reorthogonalization can remedy the orthogonality, but aside from
producing more nearly orthogonal vectors, they have not been proved to result
in better approximations to the underlying Krylov spaces. It is an open question
whether the approximations can be made consistently better. The natural bases
have been observed to be badly conditioned [7] [56], so linear transformations that
make them better conditioned evidently must be ill-conditioned too, and thus must
be difficult to apply accurately.

The least squares problem can be difficult to solve however it is formulated.
The ger/orthomin approach may be flawed because it solves the normal equations,
but other methods must contend with near singularity of the least squares bases.
The matrix H, of the gmres approach has a 2-norm condition number no worse
than A’s, but by being smaller it may reflect ill-conditioning more. Alternatively,
the natural bases of Krylov spaces can be very nearly singular.

It is difficult to concede that any but the best solution method should be
applied to the least squares problem. For least squares problems in general, “the
only fully reliable way to treat rank deficiency is to compute the singular value
decomposition” [26, p. 170]. Apparently no iterative methods heed this advice. Yet
the singula.r value decomposition is fairly inexpensive for the small matrices that
appear in restarted gmres, for example, and may remove some of the difficulties
occasionally reported for this method [56] [57].

In summary, existing implementations always employ orthogonal bases to re-
duce storage and computation. The savings in storage appear to be at most a factor
of two, as for gmres versus gcr. This improvement is marginal on present-day com-
puters and should not govern the choice of implementations. The savings in time
may be more significant.

The advantages of orthogonal bases must be weighed against numerical con-
cerns. The A*A-orthogonal bases impose inferior least squares solution methods.
In the presence of rounding error moreover, it is known that recursively generated
bases may not accurately span the intended spaces. The effects of this on nonter-
minating, iterative algorithms are largely unexplored.
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6b. An Implementation

The following implementation is generic to all oc (k, m) methods. It solves the least
squares problems by the singular value decomposition, the best available method,
and uses the natural bases for the Krylov spaces. This implementation is offered
both as a research tool and as a model of programming simplicity. It has several ad-
vantages. First, the implementation allows easy substitution of methods, including
restarted ger/gmres and truncated orthomin. Second, it addresses some numerical
difficulties likely to trouble both old and new methods. Third, it conveniently relies
on well-known numerical procedures found in many scientific computing libraries.
This implementation, applicable to all oc (k,m) methods and devoid of program-
ming complications, may be the most appropriate in the present, early stages of
development.

With the natural basis, all algorithms have the same implementation but for

the choice of basis vectors. Methods such as conjugate residual and orthomin that

" don’t use the full tableau can be implemented by simply choosing a subset of the

larger basis. The columns of AV, for the specific V;, of interest must be constructed

explicitly. Most can be borrowed from previous steps. Only the vectors Ar,_i,

A%rn_y, ..., AFr,_; associated with the most recent solution are new. They require

k matrix-vector products. The vector Az,_;, which also forms r,_;, requires one
more matrix-vector product or can be obtained recursively.

The least squares solution process is numerically robust. The singular value de-
composition solves the least squares problem more accurately, though perhaps more
expensively, than orthomin-like implementations would solve the normal equations.
Errors can enter the least squares basis only through the matrix-vector multiplica-
tions which produce AV, from V.

Operator coefficient methods should alleviate the concern that the natural bases
for Krylov spaces are too nearly singular. High order operator coefficient methods
make high degree Krylov spaces unnecessary. If very high degrees are needed, then
Euclidean-orthogonal bases may be computed in the manner of Arnoldi, and may
be integrated into the computations.

The following steps compute the minimum norm solution of the least squares
problem. They are based on recommendations in the text of Golub and Van Loan
[26]. First, the columns of AV, should be scaled to have unit 2-norms. This makes
k2(AV,) nearly minimal and improves numerical accuracy. Scaling also avoids nu-
merical overflow and underflow when a matrix repeatedly multiplies a vector. Sec-
ond, Householder transformations should reduce AV, to an upper triangular matrix.
This reduces the arithmetic costs when, as here, there are many more rows than
columns. Third, the singular value decomposition of the small, upper triangular
matrix must be computed. Fourth, the minimum norm solution of the column-
scaled least squares problem can be approximated by applying an approximate
pseudoinverse obtained by ignoring small singular values. Singular values smaller
than machine round-off relative to the largest singular value might be discarded, or
more sophisticated methods might be used to determine numerical rank. Finally,
the unscaled minimum norm solution, ¢, combines the columns of V,, to produce
the next approximate solution for the oc (k, m) method, z, = V;¢,,. Table 3 restates
these steps and counts their arithmetic operations.

With ¢ basis vectors, ¢ < (k+ 1)m, the implementation needs the following re-
sources per step of the inhomogeneous oc (k, m) method. There are k matrix-vector
multiplications, and one more if residuals are not recursively computed. Memory
space of 2t vectors is needed to store V;, and the Householder transformations that
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Table 3. An implementation of oc (k, m) methods minimizing the 2-norm of
the residual for a selection space basis of sizet < (k -+ 1)m, with operation
counts. Terms independent of the matrix order N are omitted. Section 6b
provides further explanation.

step operations
scale AV, to unit column norm, 3N
V = AV, D!
Householder transformations reduce 2t’N
V to triangular form, R := QV
orthogonal projection of y, z := Qy 4N

singular value decomposition of R
solves min ||RDc,, — z||2
assemble next solution, z, := Vhen (2t — 1)N

optionally assemble Az, and r, 2tN

reduce AV, to triangular form. Very compact memory management schemes are
possible since the basis vectors pass from one step to the next but the Householder
transformations do not. Table 3 counts (2¢2 + 9t — 1) N arithmetic operations, from
which terms independent of the matrix order, N, have been discarded. The residual
calculation requires either N or 2t N operations.

This implementation repeatedly solves a large, dense, overdetermined, singular,
least squares problem. This task is basic to numerical linear algebra. The House-
holder reduction and the singular value decomposition already appear in many
computing libraries, and solution methods tuned to specialized computer archi-
tectures are being developed. The implementation therefore improves, in a sense
automatically, with advances to numerical software and hardware.

7. Varying Coefficients

Many operator coefficient methods dynamically select recurrence coefficients by
minimizing the 2-norm of the residual. This selection criterion is examined here.
Theorem 1 and its Corollary prove convergence for a large class of matrices dis-
tinguished by a simple polynomial relationship. Moreover, experimental results
indicate there is a trade-off between degree and order. This may allow high order
" methods to replace comparatively less economical high degree methods.

Theorem 1. If the Hermitian part H of P(A) is positive or negative definite
for some polynomial P with degree at most k and P(0) = 0, then for every
z, the affine space

z, + span {rn Arp A’r, ... Ak“lrn}

contains a vector 2,41 with |[rn41ll2 < pl|rellz where

_ [y _ [minr(E)(?
”‘\/1 [ TP ] <L

31



The affine space also contains a vector 2,41, usually different from the
first, with ||len41]l2 < pllen]|2 (proof appears in Appendix 1).

Corollary to Theorem 1. If the Hermitian part H of P(A) is positive
or negative definite for some polynomial P with degree at most k and
P(0) = 0, then oc (k, m) methods whose selection spaces contain the affine
space

Ty, + span {rn Ar, A%r, ... Ak_lrn}

converge for the selection criteria that minimize the 2-norm of either the
residual or the error. At each step the norm declines by at least the factor

min |A(H)| ]
\/1‘[ TP | <1

The thesis of Elman [14] is the inspiration for Theorem 1. The Corollary applies
to ger(k—1)/gmres(k) as well as to more general methods. However, only the case
in which A itself is positive or negative definite appears to have been published pre-
viously, by Eisenstat, Elman and Schultz [13]. Saad and Schultz mention this case
too, and present more detailed convergence results for diagonalizable matrices [47].

Theorem 1’s bound on the convergence rate may be weak because it is inde-
pendent of the recurrence order m. The Theorem minimally assumes each residual
rn, equals a linear combination that includes vectors from

2 k
span {r"_l Arp_q A’rp_y ... A r,,_l},

but the combination also may employ vectors from the larger space

Tn—-1 Tn—2 s Tn—m
Arn_y Arp_o T Arp_m

span . .
Abrp 1 A¥r,_o oo Abp_

Thus, r, depends on powers of A up to A¥™. This suggests the convergence rate
may vary with the product km.

Figure 5 provides numerical evidence for this interpretation. The Figure ex-
hibits level curves of observed convergence rates as functions of k and m for the
convergence histories shown in Figure 6. The level curves have the expected quali-
tative behavior. In this example, the oc(6,1) and oc (3,5) methods have essentially
the same convergence rate. This means they achieve the same accuracy in the same
number of steps, but the oc(3,5) method requires half the matrix-vector multipli-
cations.

This apparent trade-off between k and m may be the most important aspect of
oc (k,m) methods. It allows the beneficial effects of larger k in ger(k—1)/gmres(k)
to be realized more economically with larger m. The most efficient choice of k
and m can be expected to change with the computer and the problem, and with
the expense of solving each step’s minimization problem relative to the expense of
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performing matrix-vector multiplications. If the convergence rate p did vary only
with km, for example if

p(k,m) = p(k/¢t, £m),

then low degree, high order methods would be more economical. Minimizing the
2-norm of the residual involves solving a least squares problem with a basis of size
(k+1)m whose computation and memory requirements are roughly constant among
oc (k, m) methods with the same km. But oc(k,m) performs k or k + 1 matrix-
vector multiplications per step, and this part of the total cost decreases with k.
Considerations of this kind can be expected for all manner of coefficient choices.

The frequently used minimization criteria of the kind in Theorem 1 are a power-
ful but imprecise tool for choosing coefficients. They may not find coefficients that
produce convergence, and even when they do, they may not produce the fastest
convergence. Moreover, the Theorem’s bound may be a poor estimate for the con-
vergence rate because the selection criteria minimize norms of vectors, but the
bound employs norms of matrices. When these matrix-vector norms are applied to
matrices, they depend on both the eigenvalues and eigenvectors, while Theorem 2
in the next section shows convergence can depend on the eigenvalues alone.

The following example illustrates these concerns. The matrix

a B
a f
o

has eigenvalue o and its Hermitian part has eigenvalues between Real (o) =+ |8].
Among oc (1, m) methods, a stationary Richardson’s 1st order method can be made
to converge independent of 3, yet 3 can be chosen so the Hermitian part is indefinite
and Theorem 1’s bound is ineffective.

8. Constant Coefficients

This final section determines exactly when operator coefficient methods with con-
stant coefficients converge. This information has several uses. First, it may guide
the choice of k£ and m needed to achieve convergence with coefficients selected by
any means. Second, it suggests ways to select coefficients other than by the usual
minimization criteria of Section 7. Finally, it proves that some operator coefficient
methods are new by showing they converge when previously known methods do not.

The Chebyshev iteration and the stationary 2nd order method are oc(1,2)
methods that converge only for matrices with eigenvalues inside ellipses that ex-
clude 0. It is demonstrated below that some constant coefficient oc (1,2) methods
converge for non-elliptical eigenvalue distributions. These, then, are new methods.

Only the homogeneous case is possible for constant coefficients. As remarked in
Section 4, with the approximate solutions converging to z,, and with the residuals
converging to 0, the sums of z-coefficients on both sides of the recurrence equation
must balance.
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Theorem 2. A constant coefficient, homogeneous, operator coefficient
method of degree k and order m

m k m
Zn =Y Coiajt Y Y Ci AT
j=1 i=1j=1
with coeflicient tableau

C,1 Co2 ‘'° Com

€,1 Ci,2 - Cim
Ck1 Ck2 ' Ckm

converges to a solution of Az = y for all y and all initial vectors z,
Z_y, ..., T1-ym exactly when, for each eigenvalue A of A, the maximum
magnitude r()) of the roots X of the polynomial

PAX)=X™ - PL(N)X™ 1 - P(A)X™ 2 ...~ P,(AN)X™ ™
with coefficients given by the columns of the tableau
Pi(A)=co,j —c1,jA =, jA% — - —cp jA*

is strictly less than 1. Moreover, there is a bound upon the residuals for
all y and all initial vectors zg, -1, ..., T1—m

lIrall < Cllroll + llr=all + -+ + lIr1-mll) @(n) R,

and if A is nonsingular there is an identical bound upon the errors

lleall < (lleoll + lle-1ll +-- - + ller-mll) @(n) R".

R is the maximum r()) for all the eigenvalues of A. Q(n) Is a polynomial
that depends on the norm, on A, and on the coefficient tableau. The norm
may be any consistent matrix-vector norm (proof appears in Appendix 1).

There is some evidence that constant coefficients may work well in the long run.
The Chebyshev iteration’s coefficients converge to values for which the stationary
2nd order method converges identically [38]. To the extent coefficients chosen by
some means do become stationary, Theorem 2 explains the minimal k£ and m nec-
essary before the coefficient selection criteria can make oc (k, m) methods converge.
An entirely constant coefficient iteration might be useful when many systems of
equations feature the same matrix. The trick is to find the coefficients, and Theo-
rem 2 is the first step in this direction.

The following example suggests how constant coefficients might be found, and
clarifies the statement of Theorem 2. Figure 7 shows that coefficients chosen to
minimize the residual’s 2-norm can be nearly constant over several iterations. When
dynamically chosen coefficients remain fixed for a time, then a constant coefficient
iteration with these fixed values may converge. To see if this is the case here,
Figure 8 superimposes the matrix eigenvalues, as black dots, over some level curves
of the Theorem’s eigenvalue-specific convergence rate

r(A) = maximum [X| of all X for which P(\, X) =0,
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Figure 7. Coefficients of inhomogeneous oc(2,2) minimizing the 2-norm
of the residual for one system. Appendix 2 and Section 8 explain the
calculations.

37



IMAGINARY

38

ad

Figure 8. Eigenvalues of the matrix (solid dots) superimposed on some
level curves of the convergence rate r()) for the constant coefficient regime
of Figure 7. The levels start at 1 on the boundary and decrease in steps
of 0.05. Appendix 2 and Section 8 explain the calculations.



where P(A, X) is the Theorem’s polynomial

m k m
POLX)=X™ = e j X™ T+ ) e jXx™
ji=1 i=1j=1

and where the polynomial’s coefficients ¢; ; are taken from the nearly constant
regime of Figure 7. The convergence domain is the set of A for which r(A) < 1.
Figure 8 shows all the eigenvalues lie within the convergence domain, so Theorem 2
guarantees convergence with these constant coefficients. Figure 9 exhibits the rela-
tive residuals for the original right hand side and one other in a constant coefficient
iteration.

A phenomenon discovered by Trefethen [51] explains why Figure 9 exhibits
slower convergence than Figure 8 predicts. When the matrix eigenvalues are sen-
sitive to perturbation, then convergence depends on an envelope of approximating
eigenvalues introduced by rounding error. Theorem 2 must be applied to these ap-
proximations to predict the convergence rate. Nevertheless, convergence is assured:
in Figure 9 because a convergent iteration that already accounts for the envelope
suggests the constant coefficients.

For a given matrix even with known eigenvalues or approximations thereto,
it can be difficult to find any convergent coeflicients let alone optimal ones that
minimize Theorem 2’s convergence rate, R = max r(A). The inverse problem of
finding eigenvalue domains convergent for given coefficients is at least numerically.
straightforward. It amounts to seeking the A for which all the roots X of the
Theorem’s polynomial P(}, X) have magnitude less than 1.

Figure 10 displays the convergence domains for some arbitrary coefficient tab-
leaux as large as 3 x 2, that is, for methods up to oc (2, 2).

co,t Co2=1—co
€11 €12
C2,1 €22

Table 4 lists the speciﬂc coefficients.

Table 4. Constant coefficient tableaux for the convergence domains pic-
tured in Figure 10. Section 8 provides further explanation.

a) 08 02 b) 08 02

1.0 0. 1.0 —0.3
0. o 0. o
¢ 08 02 d 10 o0
1.0 —0.7 10 0.
0. o 05 0.
e) 08 02 f) 05 05
1.0 0. 10 02
—05 0. 05 02
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Figure 9. 2-norm relative residuals for the iteration of Figure 7 (lower solid
line), and for a constant coefficient iteration with the same right hand side
(higher solid line) and a different right hand side (dashed line). Appendix 2
and Section 8 explain the calculations.
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Figure 10. Level curves of convergence rate r()) as a function of A in the
complex plane for Table 4’s constant coefficients. The levels begin at 1 on
the boundaries and decrease in steps of 0.05. Appendix 2 and Section 8
explain the calculations.

41



As explained in the survey of Section 2, Richardson’s 1st order method, oc (1, 1),
has a circular convergence domain. Figure 10a shows the typically elliptic domain
of the stationary 2nd order method, oc(1,2).

Figures 10b and 10c prove that some operator coefficient methods are new.
Oc(1,2) methods require just one matrix-vector multiplication per step, and yet
fully populated 2 x 2 tableaux have non-elliptic convergence domains because th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>